
RADC-TR-66-7, Volume II

Final Report

ADVANCED COMPUTER ORGANIZATION STUDY

Volume II - Appendixes

Donald L. Rohrbacher

TECHNICAL REPORT NO. RADC-TR-66-7
April 1966

Distribution of this document is unlimited

CLEAR I N G OUSE
FOR FED.M A :-:'.''iFIC AND

TEC"'TNT '" ,ATION
Hardcopy -. Abhel_,7./SA DZ. OK" l<

Information Processing Branch

Research and Technology Division
Air Force Systems Command

Griffiss Air Force Base, New York

When US Government drawings, specifications, or other data are used for any purpose ocher
than a definitely related government procurement operation, the government thereby incurs
no responsibility nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications. or other
data is not to be regarded, by implication or otherwise, as in any manner licensing the
holder or any other person or corporation, or conveying any rights or pe:,nission to manu-
facturer, use, or sell any patented invention that may in any way he related thereto.

Snoc return this copy. Retain or destroy.

NOW ,

ADVANCED COMPUTER ORGANIZATION STUDY

Volume I-Appendixes

Donald L. kohrbacher

Distribution of this document is unlimited

I.

f!

j • I K " -• . . "• "- J ,nilr • • ' .L. . •' '' •'IJ

FOREWORD

This technical documentary report records the efforts and

achievements on the advanced computer organization study

conducted by Goodyear Aerospace Corporation, Akron, Ohio.

The secondary report number assigned to this d6cument by

the company is GER-12314. This report is published in two

volumes: Volume One, Advanced Computer Organization,

Basic Report, and Volume Two, Advanced Computer Organi-

zation Study, Appendixes.

The study was conducted for the Rome Air Development Cen-

ter (RADC), Air Force Systeiis Command, under Contract

AF30(602)-3550, Project No. 4594, Task No. 459406. The

RADC project monitor was Mr. Fred Dion. The report cov-

ers the 14-month period ending 30 November 1965.

Appreciation is extended to Dr. John Holland, University of

Michigan, whose consulting services were extremely valuable

in both the development and ccnception of many of the ideas

presented. The major contributors to this study were D. L.

Rohrbacher (project engiucer), Dr. K. E. Batcher, P. A.

Gilmore, .-nd G. W. Lahue. Substantial contributions also

were made by G. P. Elliott, Dr. C. C. Foster, and D. C.

Gilliland.

-ii

TABLE OF CONTENTS

.Page,

App2endix Title

I PARALLEL EXECUTION OF THE DYNAMIC PRO-
GRAMMING TECHNIQUE I

1. Dynamic Programming 1

2. Parallel Solution Model 9

11 PROGRAMMING OF THE DYNAMIC PROGRAMMING
TECHNIQUE FOR THE IBM 7090 (SEQUENTIAL) . . 17

1. Introduction 17

2. Activity Function Returns 18

3. Maximization 20

4. Lookup 21

5. Flow Charts and Program Tables 22

UIT PROGRAMMING OF THE DYNAMIC PROGRAMMING
TECHNIQUE FOR MACHINE I (PARALLEL) 43

1. Introduction 43

2. Narratives and Programs 43

3. Results 83

4. Comparisons and Conclusions 102

IV PROGRAMMING MANUAL FOR MACHINE I

1. Machine Organization for Machine I 111

2. Instructions 112

. Niunber Representation 126

-iii- ,'

_ _.. _ _ _ _ ,,r 4.•

_ _ __ __ __ __ _

TABLE OF CONTENTS

Appendix Title Page

V BI--TONIC SORTING 129

1. Introduction 129

2. Bi-Tonic Sequences 129

3. Si-Tonic Sorting Operators 136

4. Conclusions 137

VI BASIC ORGANIZArTON OF MACHINE I 139

1. Introduction 139

2. The Problem of Accessing Data in Computer
Organizations 139

3. A Multiaccess Self-Sorting Memory Organiza-
tion 140

4. Parallel Computer Organization 158

5. Conclusions 161

VII PARALLEL MERGING- SEPARATING NETWORKS 163

1. Introduction 163

2. Functional Description of a Merging-Separating
Memory. o3

3. Parallel Memory. 167

4. Conclusions 181

VIII PROBLEM SELECTION FOR A PARALLEL PROC-
ESSOR 183

1. Introduction 33

2. Jacobi's Method 183

3. The Relaxation Technique 188

4. Numerical Solution to LaplacL's Equation . . 192

IX MACRO INSTRUCTIONS FOR A PARALLEL, PROC-

ESSOR 223

1. Introduction Z3

2. Defnitions* 223

3 . .ion 3

-I.

TABLE OF CONTENTS

Appendix Title &a2.

X PARALLEL COMPILATION 235

1. Introduction 235

2. Parallel Compilation 235

3. Simulation and Results 245

XI FURTHER NOTES ON PARALLEL COMPILATION. 263

1. Introduction 263

2. Problems of Implementation 263

3. Suggested Modifications 265

4. Conclusions 283

5. List of References 283

XII PROGRAMMING OF THE SEQUENTIAL COMPILA-

TION ALGORITHM FOR THE IBM 7090 285

1. Introduction 285
2. Description of Algorithm 285

3. A Simplified Approach to Compiling Substitu-
tion Expressions 295

4. Charts, Assembly Listing, and Timing Equa-
tions 298

XIII MACHINE II PROGRAMMING 325

1. Introduction 325

2. Discussion of the Program 325

3. Results and Comparison. 333

4. Object Program 334

X.•V PROGRAMMING MANUAL FOR MACHINE II . 357

I. Introduction ;57

2. Brief Description tif Machine 357

3. Word Formats 357

4. Operation360

S. Example Prog rams 368

6. Conclusions 371

_V-_i

v toll-

TABLE OF CONTENTS

Appendix Title Pae
7. Operations that Leave a Result 371

8. Operations that Leave No Result 373

XV BASIC ORGANIZATION OF MACHINE II 375

1. Introduction 375

2. General Description 375

3. Memory. 377

4. Processors 379

5. Task Level Computer 380

6. Memory Request Sorter 383

7. Multiprocessor Control 384

8. Conclusions 388

XVI PARALLEL NONNUMERIC PROCESSING 391

1. Introduciion 391

2. Nonnurneric Processing 391

3. Classes of Properties 391

4. Some Present-Day Nonnumeric Processors . . 392

5. Contcnt-Addressing by Structure-Addressing . 393

6. Structure-Addressing by Content-Addressing . 395

7. A Sorting Memory as a Multicomparand CAM . 397

8. A Parallel Nonnurneric Processor 402

9. Algorithm for Parallel-Structure Searches , . 403

10. Conclusic.. 405

11. List of References 405

E

LIST OF ILLUSTRATIONS

Figure ____________Title Paze

I-1 Sequential Dynamic Progrmmmirng Flow Chart 5

1-2 Sequential Optimal Allocaticn Readout 8

1-3 Readout Process for Paralle' Solution Model . . . 15

1-4 Readout Process for X = 2.0 16

II-I Activity Function Control Flow Chart, IBM 7090 . . . 23

1.-2 Acti'vity Functions I and 2 Flow Chart 24

11-3 Activity Function 3 Flow Chart 25

11-4 Activity Function 4 Flow Chart. 26

11-5 Activity Functions 5 aad 6 Flow Chat.-......... 27

U1-6 Maximization Function Flow Chart, 13M 7090 28

II-7 Lookup Function Flow Chart, IBM 7090 31

11-8 Table Layout. IBM 7090 42

in- I Activity Function I Flow Chart, Machine I .. . 44

III-2 Activity Function 2 Flow Chart. Machine I 48

U1- 3 Activity Function 3 Flow Chart, Machine I . . 51

1U, 4 Activitv Function 4 Flow Chart. Machine I .. . 59

W-5 Activity Function S Flow Chart, ',achine I . 71

111-6 Activity Functioau 6 Flow Chart, Machine 1 . 74

111-7 Maximieation Futction Flow Chart, Macht-e 1 .1 77

ILI-8 Lookup FNnction Flow Chart. Machine I. 84

-vii-

LIST OF ILLUSTRATIONS

Figure Title

111-9 Activity Function I Timing Chi t, Machine I . . 87

iii-i-0 'ctivity Function 2 Timing Chart, Machine I 88

I- h•- 11 Activity Function 3 Timing Chart, Machine I 91

111-12 Activity Function 4 Timing Chart, Machine I 93

II- 13 Activity Function 5 Timing Chart, Machine I 96

11-14 Activity Function 6 Timing Chart, Machine I . 97

I1-15 Maximizatic,.i Programs Data Flow Diagram, Machine I 98

Lu-16 Maximization Program I Timing Chart, Machine I . 99

111-17 Maximization Program 2 Timing Chart, Machine I . 100

11-18 Maximization Program 3 Timing Chart, Machine I . 101

L1-19 Maximization Program 4 Timing Chart, Machine I . 103

UI-2O Maximization Program 5 Timing Chart, Machine I . 105

i11-21 Processor-Usage Chart, Machine I 107

VI-I Symbol for a Comparison Element 142

VI-_ A 13-NOR Comparison Element 143

VI-3 Symbol for an M m Merging Network 144m,

VI 4 Construction of M from Two Subnetworks and am, n
Set of Comparison Eiements 145

VI-5 M 10, 1 Merging Network 147

VI-6 M 12 4 Merging Network 148

VI-7 Bi-Tonic Merging NetworkI0

VI-8 Construction of N2q from Two N Networks and

24-1 Comparisons .1......... I50

-viii-

ti

LIST OF ILLUSTRATIONS

Figure Title Page

VI-9 Construction of N 153

VI-10 A Multiaccess Memory with 2 q - 2+1 Words and 2P
Requests 155

VII- I Merging-Separating Memory Cycle 166

VII- 2 Example of Word Interchanges 168

VUI-3 Sixteen-Word Merge Arranged for Same Wiring Pat-
tern between Each Pair of Levels 169

VII-4 Eight-Element Version of 16-Word Merge 170

VII-5 Example of Use of Same Wires for Merging andc Sepa-
rating 171

VII-6 Digit Store (ith Digits in an Element) . . . 0 172

VII-7 p-Group for the Comparison Circuit 173

VII-8 Word Store for 36-Bit Words (3-Level Cascade) . . . 174

VII- 9 Ring-Sum Element 175

ViI-10 Ring-Sum Tree for 64-Word Memory 176

VIII- I Run 1, Simultaneous Displacements, Approximation
A(+), 12 Iterations 197

VIII-2 Run 1, Simultaneous Displacements, Approximation
B(X), 11 Iterations 198

VIII-3 Run 1, Simultaneous Displacements, Approximation
C(), 12 Iterations 199

VIII-4 Run 2, Simultaneous Diqplacements, Approximation
A(+), 12 Iterations 200

VIII-5 Run 2, Simultaneous Displacements, Approximation
B(X), 12 Iterations 201

VIIl-6 Run 2, Simultaneous Displacements, Approximation
C(), 12 Iterations 202

-ix-

LIST OF ILLUSTRATIONS

Figure Title Page

VIII-7 Run 3, Successive Displacements, Approximation
"A(+), 12 Iterations 203

VIII-8 Run 3, Successive Displacements, Approximation
B(X), 12 Iterations 204

VIII-9 Run 3, Successive Displacements, Approximation

C(), 12 Iterations 205

VIII-l 0 Parallel Fill-In 207

VIII- 1 Parallel Fill-In, Run 1 209

VIII-12 Parallel Fill-In, Run 2 210

VIII- 13 Parallel Fill-In, Run 3 211

VIII- 14 Parallel Fill-In, Run 4 212

VIII-15 Parallel Fill-In, Run 5 213

VIII- 16 Parallel Fill-In, Run 6 I . .. 214

VIII-17 Parallel Fill-In, Run 7 215

VIII- 18 Parallel Fill-In, Run 8 216

VIWE-19 Parallel Fill-In, Run 9 217

VIII-20 Parallel Fill-in, Run 10 218

VIII-21 Parallel Fill-In, Run 11 219

X-1 Parallel Compilacion Algorithm. 239

XI-1 Translation f-omn MAD to Reverse Polish Notation . 2 67

XI-2 Flow Chart for Parallel Compilation 71

XI-3 Graphical Interpretation of List (5)"... .75

XI-4 Subroutine for Finding L 279

XI-5 Subroutine for Firnhng V. 280
J

" X U- 1 Formaat (4f an Input St rin,. ,of Iteii~s............... 28

- -X--

LIST OF ILLUSTRATIONS

Figure Title Pae

XII-2 Compiler General Flow Diagram 291

XII-3 An Arithvnetic Operator General Flow Diagram . 297

XII- 4 Compiler Flow Chart 299

XIII-I Flow Chart for Triple Generation Process. 335

XIII-2 Master Flow Diagram 336

XIII-3 Able, Baker, Charlie Subroutines 337

XIII-4 George, Joe Subroutines 338

XIII-5 Easy, Fox, Halo, Ipswick Subroutines 339

XIII-6 Dog, Koala, SP, SPU Subroutines 340

XIII-7 SPB. GEN01 Subroutines 341

XUI-8 GEN02, GEN03, GEN04 Subroutines 342

XIV-I Block Diagram of Machine 358

XIV-2 Example of POLY Program 369

XIV-3 Example of TREE Program 370

XV-I Block Diagram of Machine II 375

XV-2 Memory Word Format. 377

XV-3 Memory Request Forrnatt 383

XV-4 Muhiprocessor Control Word Formats 385

XV-5 Operand Request Format 387

XV-6 Timing Charts. 389

XVI-I Word Formats in a Multicomparand Content-Addressed
Sorting Memory 398

Xý11- A Parallel Nonnumeric Processor 402

-.- WT I

LIST OF TABLES

Table Title

I-I Activity Returns for Equation 1-9 6

i-2 Sequential Maximization of Equation 1-9 7

1-3 Parallel Solution Model 13

1-4 Parallel Maximization of Equation 1-9 14

II_-I IBM 7090 Execution Time for Dynamic Programming
Problem 32

SII.. 2 Activity Function Control Program, IBM 7090 3Z

11-3 Maximization Function Program, IBM 7090 33

S11-4 Activity Functions Program, IBM 7090 35

11-5 Lookup Function Program, IBM 7090 39

11-6 Common Storage 40

III- Activity Function 1 Program, Machine I 45

111-2 Activity Functions 1 and 2 Data Vector Formats, Ma-
chine I 46

111-3 Activity Function 2 Program, Machine I 49

111-4 Activity Function 3 Program, Machine I 53

I1-5 Activity Function 3 Data Vector Format, Machine I . 57

111-6 Activity Function 4 Program, Machine I 60

111-7 Activity Function 4 Data Vector Format, Machine i 68

111-8 Activity Function 5 Program, Machine I 72

111-9 Activity Functions 5 and 6 Data Vector Formats, Ma-
chine I 73

-Xiii-

LIST OF TABLES

Table Title Page

1ll-10 Activity Function 6 Program, Machine I 75

III-I I Maximization Function Program, Machine I 78

Inl-12 Maximization Function Data Vector Format, Machine 1 80

111- 13 Lookup Function Program, Machine I 85

111-14 Activity Function 3 Minimum and Maximum Output-
Data Times, Machine I 90

111-15 Activity Function 4 Minimum and Maximum Output-
Data Times 95

111- 16 Comparison of IBM 7090 and Machine I Execution
Times, Dynamic Programming Problem 102

VIII-1 Residues after Twelve Iterations for Runs 1, 2, and 3 196

X-1 Precedence Hierarchy 236

X-2 Replacement Statement Set 248

X-3 Results after Pass 1 249

X-4 Results after Pass 2 250

X-5 Results after Pass 3 251

X-6 Results after Pass 4 252

X-7 Results after Pass 5 253

X-S Results after Pass 6 254

X-9 Results after Pass I 255

X-10 Results after Pass 8 256

X-11 Results after Pass 9 257

X-12 Results after Pass 10 258

X-13 Results after Pass 11 259

X-14 Triple Summary 260

"-Xlv-

LIST OF TABLES

Table Title .Page

XI-I Precedence Hierarchy for RPN Translation 268

XI-2 Example of the Compilation Procedure for Statement(3) . 28
XI-3 Example of List Expansion and Precedence Determi-

nation for Statement (3) 282

XII-1 Hierarchy of Input Items 286

XIH- I LList 327

XII.I-2 PList Status and Compiled Triples 327

XIII-3 Compiler Program 343

XIII-4 Object Program 355

XV- I Task Levels at Successive Execution Cycles Assuming
a Given Initial Condition 382

-xv-

4 o

APPENDIX I - PARALLEL EXECUTION OF

THE DYNAMIC PROGRAMMING TECHNIQUE

1. DYNAMIC PROGRAMMING

Dynamic programming is a mathematical technique devised by Bellmana

for maximizing a function of n variables:

R n X gilx)

where

gi(O) 0 and
t1j gilxi) -• 0

over the region

(X) : I(x x 2 x. X x, x. (1-2)(X 11 Xn X 2 X n)X

The dynamic programming technique is directly applicable to allocation

,roblerns.

Cunsider the x of Equation 1-2 to be a resource that is to be allocated to

some n activities. Let xi denote the allocation to activity i, and g.(x.) the

resultant return from activity i. Then the total return from all n activities

may be expressed by Equation I-1. The problem is to determine an op-

timal policy of allocation, that is. to maximize Equation 1-I and

aBellman, R E. , and Dreyfus, S. E.: Applied Dynam&.. Prolgramming.

Prtnceton. N. J.. Princeton University Press, 1962.

1.1-

- ~ 7

APPENDIX I

determine the allocations by which the maximization is effected. The dy-

namic programming solution to the maximization problem rests on the

"discretization" of the range CO, x] and the application of Bellman's prin-

ciple of optimality, which may be stated: "an optimal policy has-the

property that whatever the initial state and initial decision are, the re-

maining decision must constitute an optimal policy with regard to the

state resulting from the first decision.

In the execution of the dynamic programming technique, the following

sequence is conbt-ucted:

f (x), f2 (x) .. . , fn(x) (1-3)

where

fk(x) . SklX IRk(xlI x2, (1-4)

with

R k(xlI, x2' . .. Xk) and Sk(x) as defined in Equations 1-l and 1-2.

Making the reasonable definition,

10(x) = 0 (1-5)

and noting that fI(x) gI(x), the following recursive relation can be de-

duced:a

f,(X) ax(16
fk 0 " o 1 x Lklxk) l+ x xk)' (1-6)

thus ebtablishing an inductive method for determining the sequence (1-3).

Equation 1-6 is just the mathematical expression for the principle of

optimality; it allows the reduction of the problem of maximizing one func-

tion of n variables to that of maximizing n functions of one variable. In

a k d

.VOW

APPENDIX 1

the execution of the dynamic programming technique, the following se-

quence also in constructed:

xI(x), Xz(X), . .. , X(X) {(I-7)

where xk(x) is the allocation to gk(xk) that maximized fk(x).

The heart of the dynamic programzning technique, then, is the construc-

tion of the sequences (1-3) and (I-7). As mentioned above, computa-

tional considerations require the discretizing of the range 50, x], say into

the partition

0 = t0< t 1 t2 < tn f x

where t &i for some fixed N. A partition such as (1-8) often is de-I

noted compactly by "a(A)b, " which is read "from a to b in steps of A."

The calculation of the sequences (1-3) and (I-7) over the partition

(1-8) requires that Jgi(x)J be calculated over the partition. For illustra-

tion of the dynamic programming technique, consider the maximizing of

the following:

1

R6 (xl, x 2 , x3 , x4 , x 5 , x 6) = I + x 3 + 2 sinx 4 +

gS(x 5) + g6 (x6), (1-9)

where

Zx 5 if 0 •- x 5 !

fis(x5S) M

4- 2xIif I X 5 2

and

96 (x6) S X

subject to the constraint

L3- _

-~ - -~ - -

APPENDIX I

6

Sx x, x 0, (1-10)

with[iy denoting the greatest integer in x.

This is to be done for each x = 0(0. 1)2; that is, for x from 0 to 2 in steps

of C. 1. A flow chart for a sequential dynamic programming solution of

this problem is given in Figure I.-1. For any solution model, it will be

necessary to evaluate the set Jgi(xi)J at each point of sonme partition. For

the present problem, the partition 0(0. 1)2 is chosen, and the functional

values are recorded in Table 1-1. From this table, the sequences fl(x),

fY(x) ., f 6(x) and xl(x), x 2 fx), .. , x6 (x) can be determined and

recorded as in Table 1-2. .ec:alling that xi(x) is not necessarily unique,

note that Table I-I contains the information necessary to determine all

optimal policies as indicated in Table 1-2.

Now consider a method for reading out an optimal policy for a given re-

source from Table 1-2. The method is simply this: Given a resource x,

(0 x = 2), select x6 (x), with x6 the allocation for g6 (x). Now select

x (x - x6), which is just x 5 , tne allocation for gs(x). Next select x 4 (x -

x6 x,), which is just x4 for g4 (x), and so forth until the allocations xl,

xzV x6 are determined for the activities gl(x,), g2 (x 2),

g6 (x6), A flow chart for the readout method is given in Figure 1-2; this

chart ignores multiple solution, but ill solutions are indicated in Table

1-2,

As an example of the readout process. suppose that x = 2. 0. Then from

Table 1-2 it can be seen that the following allocations for (xi, x , x3 .

x, x 5 , x6) yield f6 (Z) ;- 4. 12 return: (C, 0, 0. 1, 0. 0, 9, 1. 0), (0, 0,

0 , 1. 0. , 0.8, 1.0). (0. 0, 0.1. 0.2., 0.7, 1.0). (0, 0, 0.1, 0.3, 0.6.

1. 0). This multiplicity of optiurnl policies is a result Af the nonunique-

mess of {x(x)I.

-4-

N

APPENDIX I

START

NO

(X) 0 FOR ALL X 0(0.1)2 K > 6'

"'Cs

KI �ro�

X z0

-1

A-.

Figure i�1 - Sequential Dynamic Programming Flow Chart

-5-

a'
:' APPENDIX I

The solution model for the dynamic programming problem considered

here specified the calculation of each of the functions f1 (X), f2 (x),

(6 (x) over the range 0(0. 1)2. Hence, if only the first k activities, k < 6,

are to be considered, the optimal policy for a given x can be readout out

easily from Table 1-2. For example, let x = 1. 5 and k = 4. Now

from Table I-2, f4 (. 5) = 2.43, which is achieved by the following

allocations for (xI, x 2 , x 3 , x 4): (0. 3, 0, 0. 2, 1. 0), (0. 2, 0, 0. 3, 1. 0),

(0. 2, 0, 0.2, 1.1), and (0. 1, 0, 0.3, 1.1).

The solution model described above and outlined in Figure I-1 for the

solution of an optimization problem by dynamic programming is sequen-

tial in nature. It involved computing first g,(t) for t = 0(0. 1)2, then

TABLE I-I - ACTIVITY RETURNS FOR EQUATION 1-9

S2 g 5 (x) 1

S &1 (x) = X &z(xx X = x (x) = Z din x .-2x, 1 2 96 (") x]

0.0 0. 0 0.0 0.0 0.0 00 0.0

0. 1 0. 1 0.01 0.3Z 0. z0 0 2 0.0

0 2 0.2 0.04 0 45 0.40 0.4 0 0

0. 3 0..3 0.09 0. 55 0.60 0 6 0.0

0.4 0. 4 0. 16 0.63 0. 78 0.8 0. 0

0.5 0.5 0.25 0,k 0 96 1.0 0 0

0.6 Cf. 0,36 0.77 1. 14 1 2 0.0
0.7 0. 7 0. 49 0. 8, 1 .28 I4 0 0

O.28. 0 b4 0 89 1.44 1 6 0 0

0. 9 5.0 0 81 0. 95 i 5b 1 8 0 0

1.0 1. 0 1.00 1.00I bb z 0 2.

I.l I I 1.21 I ' 1 ?8 1 8 11

I.2 , 3,44 i IS I 6 1 0

1 3 1 ,3 i b9 314 1 l 2 1 4) 0

1.5 5 I 1 222 00 3 0 20

b6 12 00 20

3. .1289 3 30 1 48 0 20

3 t I 324 1S4 1 3 4 0 4 2,

_ _ _) b ::I I : 11 40 . 0

k 2. 0 0 4 00 41 S. 1Z 0 64 0

.6-JV•, -•

APPENDIX I

g2(ty for t = 0(0. 1)2, and so forth until g69t) war computed. These re-

sults make up Table 1-1. From this table, the sequences fl(x), f 2 (x),

., f6 (x) and x (x), x2 (x), • •., x6 (x) were computed sequentially for

x = 0(0. 1)2

Finally, a readout process was specified for determining optimal alloca-

tions for a given resource, The whole solution model was sequential, bit

the method of dynamic programming itself is not essentially sequential in

nature.

Now it will be indicated how parallel aspects of the dynamic programming

method may be exploited in a solution model similar to the one described

above.

TABLE 1-2 - SEQUENTIAL MAXIMIZATION OF EQUATION 1-9

,. (x) f1 x W X (X , X (X) X K) XX()f(X) X IfW-l 3 4 _____ 5* 6(b

0.0 6 .O 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0.0 00 00 0 0

0 1 0. 1 1 0 0 1 0 t 0 32- 0 0 0 32 0 0 3 00 0 32

02g o2 2 ' 0 U 0 2 0 Z 0? 0 45 0 I 0 52 0. 0. 1 0 52 0. 0 0

0. 3 0 3 0 J 0 0 0 0. 2 0 Z 72 0. 0 1. 0 2 0 7'e 0 0 0 72

0 4 0 4 1 4 0 0 0 4 u 2. 0 3 0 t, 5 0 1 0 t2 0. 0 1. 0. 0, 0 92 0. 0 0 92

0 2 0 J 0 75 0 4 1 0' 0 1. 0 . 0 3, 0 4 1 1 f 0 0 I 12

'0 ,0 1 1: S 0 S i 2 6 0 2. o 3, 0 4 0 5 1 32 0 0 3,

0 7 0 ' 70 2. 0 , 0 1) 1 0 1 40 Q 0 4, 0 5, 0 S. 0 0

j 6 0 1 1 05 0 1 60 0 4, 0 5. 0 ,0 7 0

0 I *) U11 O.0 S. 07.0 0 0~2

1 1 I I0o 4 1 ,. 0 U 1 12 8 bC 7 , . 01:. 08. 0 Q 1 4.' 0 1 '

12i 44 1 | i 1 0 1 3 1 0 d. 0 9. 1 0 4 .*2 o. S 0 2 S'

I 4 4 i I. , I I ,1i l i l O 0• , 0 I • . I • qSI 4

I- ' I ' ," 0. 2.s iI0 Z 4) 0 S 300 10 II.,0

0 0 34 1 u

I I I I~4 9 1 ,4 Z 2 4 ' C tOI0

4 00 0 44 00 Q. 44 0 1 o. 4 011 '

-7.

~~~~ "NNW" -



APPENDIX I

START

C PR IN Tk 0

K a

PI¢RINT 
D

K K-]

NOK 
01•

Figure I- - Sequential Optimal Allocation Readout

~~ro



APPENDIX I

2. PARALLEL SOLUTION MODEL

Consider the problem of maximizing, by dynamic programming tech-

niques, the function

2N

R2N(xl' xZ . ' XZN) g1()gixi (I-Id)

where 2N variables are assumed for convenience. Let

IX +2 +" XN = Yl (1-12)

XN+ 1 +'N+ 2 + x2 N = Y2  (1-13)

with

Y y2 = x

UN(y 1 ) = (x max Ng(l +
X 29 .x N ) I = Y 1

g2 (x2 ) + . . . + gN(xN)] ( (1-14)

max

V (Y2 ) (xN+ 1 XN+ V . XN) xi = Y2

i=N+ I

[EN + I xN + 1) + ) N + 2(XN + 2) +' ' • -2N,(XN)] (I-1S)

Now UN(y1) and VN(y 2 ) may be computed independently and thus in parallel.

using Equation 1-6. This equation then can be used to maximise the sum

UN(y11 + VN(y2) over

(yl' YZ) I Y + Y- x

.9.



APPENDIX I

Since computer time is approximately proportional to the number of vari-
• ables, the sequential solution time for the maximization of Equation I- I

is proportional to 2N; the corresponding parallel solution time is pro-
portional to N + 2. If 2 N variables were involved, the 2 N 1 pairs first

could be processed in parallel, then the resulting 2N " pairs, and so on.

The sequential solution time for the case of 2N variables would be pro-

portional to 2N; the parallel solution time would be proportional to ZN.

In addition to parallel aspects of the maximization of (I-I l), parallelism

exists at the lowest-level computations (fundamental and subroutine type

computations). For example, initially the ZN vectors [gi(0), g(A)

Sgi(x)] i = 1, 2, . . ., ZN can be computed in parallel.

As a specific example of the injection of parallelism into a dynamic pro-

gramming solution model, consider now the example problem introduced

above; that is, the maximization of (1-9) under the constraint (I-10).

The several activity functions of Equation 1-9 are independent of one

another and hence can be calculated in parallel on a parallel processor.

However, efficient use of a parallel processor prohibits parallel computa-

tions that contribute little or nothing to improved solution speeds, and hence

tax machine capacity unnecessarily. Since the calculation of the sequences

(:.-3) and (1-7) is the ultimate goal of the dynamic programming tech-

nique, values for the activity functions fgi(t)I need not be calculated prior

to the time when ..he values are needed in the computation of (1-3) and

(1-7).

Consider a partition x 0 (A)x to be used in the dynamic programming maxi-

mization of a function of type (1-I).

In general,

fk(xo + ja+ iA) + - 1(x + (j- . 116

Hence, to calculate fk(xO + iA) only the following values must be known:

-10-



APPENDIX I

f - lI~Xo) 'k- INX + fk .. - I, l(Xo + A

and (1-17)

gk(x0 ), gk(x 0 + A), . ., gk(x 0 + jA)

and the calcuation of the sequences (1-3) and (1-7) can in fact be

carried on in parallel with the calculation jf the activity functions Igi(t)l.

Now for the parallel execution of the dynamic programming maximization

of (1-9), make the following definitions:

max
u1(x) 0 = y - xIgz(Y) + g1 (x - Y)( )

yl(x) = y at which the maximum occurs;

max
u,2(x) = 0 -- y < g 4(y) + g 3 (x - Y)]' (1-19)

y2 (x) = y at which the maximum occurs;

maxu = ax<[g,(y) + g5(x - Y)]u3(x) 0 o < < = Ix (I-20)

Y3 (x) y at which the maximum occurs;

max
u4 (x) 0 ý y 2u2(Y) + uI(x - -2

y4 (x) y y at which the maximum occurs;

max

'~ 5() ~ [Ux,(Y) + u 3(x -YJ(-2

.v5(x) y at which the maximum occurs.

Consider the partition 0(0. 1)2 in terms of x 0 = 0 and A 0 0. 1. and then

Xi = x0 4 iA. i 0. 1. 2. . . . , 20. A chart can be constructed showing

the level-by-level parallel execution of the dynamic programming

-11.-.



APPENDIX I

maximization of (1-9), as in Table 1-3. It will be noted that in
Table 1-3 a level corresponds to a new stage of compLutation for the
activity functions Jgi(t)4 and return functions Iui(t)j over the partition
t = x 0 (A)x = 0(0. 1)2. Computation of the sequence yi(t), i = 1, 2, . .

5 has not been indicated, but the required values are an immediate con-
sequence of the calculation of the sequence ui(t), i = 1, 2, . . . , 5.

As shown in Table 1-3, the partition x 0 (&)x and activity functions

gi(x), i 6, 2, . . . , b over the partition can be calculated in 21 levels

through paraliel computation. The same computations, performed in a

sequential manner, would require 141 levels. A further indication of the
parallel characteristics of the dynamic programming technique and the

power of parallel processing is seen in that only three additional levels
of computation allow the complete maximization of (1-9) to be effected.
Sequential techniques would require 110 additional levels of computation.
Hence parallel techniques offer a total advantage of 24 to 251 for the
problem at hand. The difference in computational levels required by
parallel and sequential models indicated here, striking as it is, only
begins to point out the increased computational speed offered by parallel

execution of the dynamic programming technique, since no appeal has
been made to parallel execution of basic machine instructions effecting

the individual computational levels.

The results of the parallel dynamic programming computation for Equa-
tion 1-9 are given in Table 1-4. A generalized readout process is
given in Figure 1-3. A specific readout ior x = Z. 0 is given in Fig-

ure 1-4.

In Table 1-4. the ,naximurn possible return of u 5 (2) - 4. 1Z is achieved
Sfor the following allocations to (xi, x?, x3 , x4 , x5  x) = (0, 0. 0. 1,

0.3, 0.6. 1.0), (0, C'. 0. 1, 0.2, 0.7, 1.0), (0, 0, 0. 1, 0. 1, 0.8. 1.0),
and (0, 0, 0. 1, 0, 0. 9, 1. 0) These allocations agree, of course, with

those from the sequtntial computation.

- 12-

-s ~. - -



APPENDIX I

TABLE 1-3 - PARALLEL SOLUTION MODEL

Level Partition g'" I 82J(n 93(X) 34(X) g )(x) (X) uIx) + 2(x) u 3(x) u4(x) us(x)

"0 Xi , xn A 11(0) 32()") 3(00) 9 4 (X ..

I x2 t X I+ A I (x I x) 2 (x) £g3l1) 34(13) FOCI) 36(x0) U(, 0 ) uZ(x 0 ) . . .

2 X3 z x2 +A 31(Y) 8(Xz) 33(Y2) 84(xz) 6S(X) 96(xI) u0(I () u2(x,) u 3 (x 0 ) u 4 (x0 ) . . .

"J x4 = A 3 (+ 3 1 3) ) ( •3) 13113 94(x3) 95{xZ) 36(xz) UI(Y2) u2(X2) U3 zI) u4(xd) us(X0)

4 x5 A X4 + N1) 92(4) 33() 94(x4) SOP(x6) 16(x3) u1( 3) Y"(1 3) u03(x2 U4(x 2 ) uS(11 )

5 x = x S A 13(15) 92(x0) 93(N5) g4(15) M (X4) 96(Y4) U1(N4) u2(x4) U3(V3 u 4 (x 3) 05(,2)

6 X7 = x6 + ' It(X 6) g2 (x6 ) 33(Xd) g4 (x6 ) 35(25) 96 (x.,) 11lN) uZ(xS) 13(Y4 u 4 (x 4 ) U SX 3 )

8 + A 31117) 92(X7) 93(x7) 34(,7) 950x6) 16(xb) u0(Y6) u.(V6 ) U3(x5) u4(x5) US( 4)

8 +x A 8- (1) g2 (x8) 8 (x8) 34(x8) g9(X7 ) 96(x7) ul(X7 ) u-,X) u3 (x46 ) 4() u,(xI)

9 f 19 + A g1 (x0 } g2 (x9 ) 0"(d9) 14(9) I 35(18 86(x8) Y1(xB• uz(I8) 03('7) u4 (1) uS(%6 )

10 1l x10 4 81(xi0) gZ(010) g3(xIO) 94t 0 ) 9,(xN) 96(x9) u(X 9 ) u,(',, u 3 (x8 ) u4(x8) Us(X7)

11 Xl12 Xl A •g 1(xll) 1Z( 11) 93(X1l) 14(X11) 15(Xl0) 96(310) Ul(xI0) u2 (x1,) u 3 (,9) u4 (x9) u5(x8)
12 X13 x12 11 ,(x,,)9 g2(x12 ) 93(Xl1) 14 (xl,) S(xd 1) 36(x I) dU(X1l) uP'(x,) UVx10i' u4 (x, 0 ) US(Ng)

1 IX 14 '13 + ' 191('13) 1(113) 03(13) 34(,13) 30(x12) 36(11Z) u0(xl) u2('12) u3(x d) u4(1X3) u5(X3o)

14 x5 X14 ' 31(x14) gZ('14) 33(x14) 14(,14) 95(x13) 16(X13) u. (x,3) U2(x13) U3(xlZ) U4('12) 'S(1 I)
15 X16 '15 ÷ A 11(x15) 32(x135) 33(1 5) 84(13S) 0,(X14)1 90 (14 ) '1('14) '2('14) u,( 0) u4('13) us(112)

16 x17 '16 + A W(XNW) 62(x16) 90(x 16 ) 14(x16) 9,(xl5) 86(,15) U0(XiS) uZ(1I5) u3(1114) U.4(X14) Us(X13)

17 x,18 '17 +4 A I(X)(7) 32('417) 13(x1l) 34(137) 95('16) (6(116) 01(11u6)0(Xl6) u3(X135) 114 (x 1 5 ) US(X14)

18 X19 X18 +A ' j(1xt)) 12('18) 93(' 418) S 5(.18 7 16(x1 7) 96('17 ) uZ('17) U3(X,6) u4(116) US('35)

19 X 20 1(x19' 92('19) 33('19) 54(xl9) 35(3'18) 6(X18) "Y"18) I u03(l) u4(x,,) uS(x16)
20 .. 1(XZ0) 22(320) ( 3(1_0) g4(X20) gS(319 16(•19) UYx019x,9 9)u3(x13) Y4( 18) uS(X17)

21 ... ...)15(,20 16(120) 02(XO) 03(,19) 04(139) 0.5 )13)

337 .3('20) 2? ... ... _ 4('20) u,( )
23 .US(-20)

Ai(1) (with i z 1 . 2. 6) defined as on Page 3.

' (x) (with i = 1. Z. S) defined as on Page I3.

For a resource of x = 1.6, the maximum return of u 5 (l. 6) = Z. 57 oc-

curs for the allocations (0, 1. 5, 0. 1, 0) if only the first four activities

are considered.

3. CONCLUSIONS

Dynamic programming hait been introduced and illustrated by a specific

e.cample. The dynamic programming technique was examined for se-

quential and parallel characteristics. Parallel characteristics were

noted and found to provide a basis for significant increases in processing

.13.

_______________r__..



APPENDIX I

TABLE 1-4 - PARALLEL MAXIMIZATION O EQUATION 1-2

X Yl(X) U1 (X) v2 (x) uPO y 3(x) u3 (x) y 4 (X) u 4 'X) yS(x)

0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0 0

0.1 0.0 0.1 0.0 0. 32 00 0.2 0.1 0 3z 0. 1 0 32

0.2 0.0 0.2 0. 1 0.5z 0.0 0. 0.Z 0.A2 0 2. 0' 0.52

0. 3 0 0 0, 3 0. 2 0. 72 0.0 0 6 0 0. 72 0 ,. 0 3, 0.4 0 72

0.4 0.0 0.4 0.3 0 92 0.0 0.8 0.4 0 9Z 0 1, 0.,0 3, 0 4 0 92

0. % 0,0 0. 5 0. 4 1. 10 0 0 1. 0 0 5 I. 10 0 k, 0. 2, 0 3. 0 4 I 12

0.6 0.0 0. S 0.5 2I -8 0. 0 1 z 06 1•.8 0. 1, 0 Z, 0.3. 0 4 1 32

0.7 0.0 0.? 0.6 1.46 0.0 1.4 0 7 1.46 0.1, 0. 2. 0 3. 0 4 1 52

0.8 0.0 0.8 0,7 1.60 0.0 1.6 08 1 60 0. 1 0.2. 0 3, 0,4 1 72

0.9 0.0 0 9 0.88 76 0. 1 .8 0.9 1 76 0 A, 0.2. 0 3, 0.4 1 92

1.0 0, 1.0 1.0 C. 8 1.89 0, 1.0 2. 0 1.0 1 e9 0.1, C 2, 0. 3, 0 4 2 12

1.1 1 1 1 21 0. Z.01 1.0 .2 1.1 2.01 0. 1, 0.2, 0. 3 0.4 32

1.z 1.2 1.44 i. 0 2. 13 1.0 Z.4 1.2 2 .13 0 1, 0. 2. 0 3, 0 4 ".52

1.3 1.3 1.69 1.0. .1 2. 23 1 0 2 6 1.2. 1. 3 L .3 0 L, 0.2, 0 3. 0 4 2 72

1.4 1.4 1.9P 1.1 2.33 1 0 Z8 1.2, 1. 3, 1.4 Z 33 0 1 0 Z. 0 3. 0 4 Z. 92

L.5 1.5 2. 25 1 1. 1.2 2 41 1 0 3.0 1.2. 1.3, 1.4 Z.43 0 1 0., 0 .•, 0 4 3 I2

1.6 1.6 2. Su I I, 1.2 2.49 1.0 3.2 0 1 z S7 -.. 0 2, 0.3, 0 4 3 32

1 7 1. 7 2. 891. 2 10 3. 4 0 0 2 89 0 1.0. 2. 0. 3, 0. 4 3.52
1.8 8 3. 241 .2,1.3 0. 1o 6 0 0 324 0. 0.2. 0.o3. 0.34 72
19 1. 9 3.61 I 2 70 0 1 38 0 0 3.61 0.1, 0 Z. 0.3, 04 3 3.92

Z.o0 2. 4. 001 1. 3. -7, [10,t70 4 0 00 4.00O 0 1, 0.2• 0 3, 044 C12

time. The results indicate that construction of efficient solution models

for parallel processors depends heavily on analysis of the problem and

machine at hand. so that machine capacity is not unnecessarily taxed in

parallel computations that improve solution speeds very little if at all.

-14-



i.

APPENDIX I

3 in

>. 'I 
x [I

x

ESIS

Ii

-
x-

0

w

I z

x w
-f"

> z

• x 0-

II

N It -

0

F u 3
- K

. U, K '

UV- 
*•. 1

F~gur• I" J Rc~tdut Pr~ess •o Par~leS ouio oe

.15. •-



APPENDIX I

2.0

(0.4, 0.3. 0.2. 0.1) (1.6. 1.7, 1,0, 19)

(0O.O..0) (0.4, 0.3. 0.2. 0.11

iO. 0 0,0) (0, 0. 0, 0) (0.1. 0 1. 0 1 0 1((0) . 0.3 . 0..1 0) 0S6. 0.7. OS, 09 (1.0. 1.0, 1 1 0.)

Fj4ure 1-4 - Readout Process for x - 2. 0

-16-



APPENDIX II - PROGRAMMING OF THE DYNAMIC PROGRAMMING

TECHNIQUE FOR THE IBM 7090 (SEQUENTIAL)

INTRODUCTION

A dynamic programming problen. was programmed for a standard gen-
eral-purpose computer and for Ma X.re I to compare the operation oi the

two computers. T, IBM 7 090 wa t•hoien as the standard.

in programming the problem, no input-output operations are performed.

The program is assumed to be available in storage. The results are

stored in tables according to the table layout diagram (see page 42). To

obtain a recommended resource assignment for a given number of activi-

ties, the input data (N), the number of activities to be considered, and

the quantity of resource to be assigned (X ), are assumed to be in stor..

age prior to starting the lookup routine. After ihe lookup routine is exe-

cuted, the recommended resource assignment to each activity is found in

the e output table.

Minimum and ma'-imum program execution times are listed, These were

determined from -he qvuoted minimum and maximum instruction execution

times in the IBM 704,. Programmers Reference Manual.

The activity functi , program controls the execution of the individual ac-

tivity functions. In this problem., 21 eturns from each of the following

six activity functions are ;.alculated:

91 (x) x

gz(x) x

-17-

- ~ ~ 'A-•



APPENDIX .I

9g4 (x) = 2 sin x

g 5 (x) = 2x if 0 < 1

= 4- 2x if 1 - x < 2

g6 (x) = 2[x]

The returns for each function are stored in a table. When the returns for

all activity functions have been obtained, the maximization routine is exe-

cuted. The maximization routine examines the return table for each ac-

tivity function and a table of maximum returns for all previous activity

functions. Then, given some resource, the returns from all resource

combinations as applied to the current activity and to all previous activi-

ties are calculated. The greatest return is obtained and stored. The

quantity of resource that generated this maximum return also is stored.

When all quantities of resource have been tested against all activities,

the result is a series of best policy tables.

The best policy tables contain for a given quantity of resource the portion

of that resource that should be assigned to the respective activity. The

remainder of the resource is then to be allotted to the remaining activities

in the same manner.

The lookup routine has as an input the quantity of resource to be assigned

to the given activities. The besit policy table for the higher-order activity

is examined. The entry in the table corresponding to the resource to be

assig-ed is examined and a recommended assignment obtained. The re-

maining resource is then applied to the lower-order activities in the same

mar er. The result is a recommended assignment of resource to the ac-

tiN s that will generate a maximum return.

2. ACTIVITY FUNCTION RETURNS

a. General

The following are initialized: xrn ax. N, and A. with xmax the macimum

-let-



APPENDIX JI

respurce that can be allocated to any activity, N the number of activity

functions, in this case six, and A% the resource increment, in this case

0. 1.

The activity counter, k, is set to 1 and the returns for resource alloca-

tions varying from 0 to 2 in steps of 0. 1 are calculated. When the as-

signed resource, x, reaches the maximum resource available, xmax'

the activity counter is increased by 1 and returns for the second activity

are calculated.

When the activity counter hat; reached N = 6, the returns from all activi-

ties have been computed and stored in tables gk(x).

b. Activity Function 1

The retu':n from activity function 1, gl(x) = x, for a resource assignment

of x is simply x.

c. Activity Function 2

The return from activity function 2, g2 (x) x2 , for a resource assign-
2

ment of x is the square of the assigned resource, x 2

d. Activity Function 3

The return from activity function 3, g3 (x): -v\, for a resource assignment

of x is the square root of the assigned resource, --/'x. The resource is

represented in the computer as a floating point number. An initial guess

for the square root is made,

Gk - (f 4 1)

where f is the fractional pa-t of the floating point number. This guess is

the input to the iterative portion of the routine.

After three iterations where successive approximations are obtained frorr

G GGk + I - "rk + k

-19-

ma WO.



41
APPENDIX UI

the exponent of the floating point number is tested to det-rrmine the expo-

nent of the square root. Program control is then returned to the activity

function program.

e. Activity Function 4

The return from activity function 4, g4 (x), for a resource assignment of

x is 2 sine x. The input to the series is R, the residue of x mod 27r. The

sign of the sine is determined and quadrant correction of R is performed.

Then

2

7T
.2

is calculated and used as input to the series; a and a are calcuiated and

stored. The nested series approximation,

a(CI + az (C 3 + a (C 5 + a 2 C7 )))

is computed, the sign added, and the result stored. Program control is

transferred back to the activity function program.

f. Activity Function 5

The return from activity function 5, gr(x), for a resource assignment of

x is 2x for 0 - x '_S l and 4- 2x for I • x 2.

&. Activity Function 6

The return from activity function 6, g6 (x) 2[x], for a resource assign-

ment of x is twice the largest integer equal to or less than x.

3. MAXIMIZATION

The activity counter k is initially set to 1. The fk - 1 (x) table is initially

zeroed since the maximized returns from activitq 0 are zero. The re-

source to be maximized, x, is initially assigned at 0. A storage location,

1, containing intermediate maximum returns,is initially .;et at a maxi-

mum negative value to enable acceptance of the first return. Xk is the

-) U -



I>

APPENDIX II

resource to be as: igned, under the problem constraints, to activ'ty k and

to prior activities whose maximized returns for an assigned resource are

the entries of the f, 1(x) table.

Index i = xk/A is used to determi:e the return from an assignment of re-

source xk to activity k. Index j = x - i/A is used to determine the return

from an assignment of resource x - xk to prior activities.

The sum of the returns, a, is stored and compared with any previous re-

turn for the given resource, 0. If the current return is larger than the

previous maximum retu-n, 0 is replaced by a and the allocated resource

that generated this return is stored in y. If the current return is equal

tn or less th.an the previous maximum return, 0 and y remain unchanged.

Then xk is incremented by A and if it is less than or equal to the current

maximum resource to be tested, a new set of indices, i and j, are cal-

culated and the above process repeated.

When xk is greater than x, indicating that all combinations of resource

Xk subject to the constraints have been used to determine the maximum

return, then the value of the maximum return and the amount of resource

that generates this retu:en are stored in the fk(x) return table and xk(x)

policy table, respectiv Aly.

Then x is increased by A and tested against Xmax* If x is equal to or less

than x all combinations of x resource allocations consistent with themaxe

problem constraints are tested. 1f x is greater than xmax. then the fk(x)

table is moved to the fk - 1 (x) table, and k is increased by 1 and tested.

If k is equal to or less than N, then the maximizing process is repeated.

If k is greater than N, the procedure stops.

At this time, return tables and policy tables are available in storage.

4. LOOKUP

In the lookup routine, k is initialized with N, the number of activities.

The resource to be allocated is stored in x. The xth entry of the policy

yl0,



APPENDIX IU

table for the kth activity is obtained and stored in table E. X is decreased

by the amount that is assigned to activity k. The diminished x is then ap-

plied to the k - I activity and a recommended policy obtained. This proc-

ess is repeated for the remaining activities. The end result is a table of

recommended resource assignments to the k activities.

5. CONCLUSIONS

The sequential executicn bf the sample dynamic programming problem

takes 0. 151 to 0. 224 sec when programmed for an IBM 7090 (see Appen-

dix III for Machine I parallel execution). Approximately 570 words of

memory are used for program location and table storage.

6. FLOW CHARTS AND PROGRAM TABLES

Figures II-l'through 11-5 are the flow charts for the activity functions.

Figure 11-6 is the flow chart for maximation and Figure 7 is the lookup

function flow chart.

Table II- 1 shows the executioa time for the dynamic programming tech-

nique on the IBM 7090. Tables 11-2 through 11-5 show, respectively, the

programs for activity function control, maximization, the activity func-

tions, and lookup. Table 11-6 shows the common storage.

_22-

-a



APPENDIX U

START

C

kE Wxk k:

I k >k ,

II

Figure LI- - Activity Function Control Flow Chart, IBM 7090

.Z3.



APPENDIX U

i

I2x

x 2 TABLE +1|

bAF

4%

Fi (Ia

Figure UI-2 - Activity Functions 1 and 2 Flow Chart, IBM 7090

-24-

"- -"



APPENDIX II

g (x)

3

x f -

k =o

k- + I

G k+ k +

Ok} • 1 2 
Jk 

N O G k k N + ,

YES

A" F

Fiu*113AtviyFntin3FowCat 

IM79



APPENDIX II

84(

-I---R~

ft ft IRF x IN QI

R R- ft F x IN Q2

i

pt 12IN

kt 2w IF R<1Q

2

SI -I k[ IF OR>3~c

--- , -

R F No

R ! NQ

-~~~~~~~ ~~~ = -- .. .. . I• O,.F x IN Q3ll~llat ~ qi



APPENDIX II

32(xI

iTA LE + 11 4 2Ixi TABLE 11

( ) '

x

2 Ite TBi#6 A L + 1
- It -

Fiur 11-5 Aciv- Fucin -, an 6 lwCatI M?9



APPENDIX II

Lk -' _-(., -~ =10•

JE ....
® I

Sk o0

S'~j

L

Figure 11-6 - Maximization I'unction Flow Chart, IBM 7090 (Sheet 1)

.-28-



L
APPENDIX Ii

A

YES

-29

aE

y x
k+

NO
k .... .

Figure ~~ ~ YY- EE SSzmsto ucinFowCat B 00(tt

-29 -

S.... '•i~a ........" • '•-•-. -"' •- --... ••__p-- • I
%W'



APPENDIX U

( OUTPUT )

TE

-! 1(
M = k Ix)

k

4k >N 

K ALT

L~ L

Figure 11-6 Ma* L nisation Function Flow Chart, IBM 7090 (Sheet 3)

.30-



L
APPENDIX II

START

xx
0

STORE k, 9

k = k-i

k- 0 -- 4- N
NON

Figure U-7 - Lookup Function Flow Chart, IBM 7090

-31-

WWIf -



APPENDIX 1I _ ______

TABLE Ul-I ., IBM 7090 EXECUTION TIME FOR

DYNAN(C PROGRAMMING PROBLEM

Machine cycles

Item Mini .iurr Maximum

Activity function 1,056 1,056

9l1 W 127 127

g 2 (x) 169 400

g 3 (x) 1,723 3, 130

1 4 (x) 1,369 1,831

g 5 (x) 313 544

g 6 (x) 154 212

Maximization 64, 398 95,430

Lookup 176 176

Total machine cycles 69,485 102,906

Microseconds per
machine cycle 2. 13 2. 18

Total microseconds 151,477 224. 335

Total seconds 0. 151 0. 224

TABLE 11-2 - ACTIVITY FUNCTION CONTROL

PROGRAM, IBM 7090

-Mchine

Item Instruction Remarks cycles

INIT LXA 2 +SIX (T 3) A

INIT6 LXA I TWONE (TI) = 211) 2

INITZ CLA T4 (T4) =c 2

INITS x (x) C or +

I'RHA AI-1)R R

INITi C'LA x X + A 2

ADD A Ti 2

ICAS 3tmax
I'R A INIT4 I
IRA

:Nir4j. Ilx _, 211 Nt 12 It- 1

-32-



APPENDIX II

TABLE 11-3 - MAXIMIZATION FUNCTION PROGRAM, IBM 7090

Machine

Item Instruction Remarks cycles

CLA ONE 2

STO k 1 activity number 2

LXA 2 TWONE (12) = t Z1 2

RETI STZ 2 fk - 1 (x) TAB 0 --- fk I (x) table 2

TIX 2,1 RET 1 2

RET9 STZ x 0--*x resource 2

RET2 CLA 77 77 77 77 77 77 2

STO f3 2

STZ xk 2

RET5 CLA x k 2

DVH A x/A= i 3 - I I

STQ INDI =i 2

CLA x 2

DVH A x/A 3 - 14

XCA (AC) x/A 1

SUB INDI 2

STO IND2 =j 2

LXA 2 INDI (II) = k 2

LXA 4 IND2 (14) = j 2

CLA 2 9k TAB 2

ADD 4 fk- ITAB (AC) a 2

CAS 0 3
TRA RET3 > I

TRA RET4 I

TRA RET4 < I

RET3 STO 13 (3) :a 2

CLA x(k 2

STO y (y) Z Xk 2

RET4 CLA xk 1 2

-33-

yr"A



APPENDIX 11

TABLE 11-3 - MAXIMIZATION FUNCTION PROGRAM, IBM 7090 (Continued)

Machine
Item Instruction Remarks cycles

ADD A 2
STO xk xk = xk + 2

CAS x 3
TRA RET6 > 1
TRA RET 5 1
TRA RET5 < 1

RET6 CLA A Best returns 2

STO 2 fk(x) TAB 2

CLA v2
STO 2 xk(x) TAB 2
CLA x z
ADD L 2

STO x x x+A 2

CAS x 3
TRA OUT > 1
TRA RET2 1
TRA RET2 < I

OUT "OUTPUT"

LXA 2 +TWONE =21 2
RET7 CLA 2 fk(x) TAB 2

STA 2 fk- 1(x) TAB 2

TIX 2, 1 RET7 2
CLA k 2
ADD ONE 2
CAS N 3
TRA RET9 > I
TRA RET8 I

RET8 STO k < 2

___TRA RET9 -

-. 4-



APPENDIX II

TABLE 11-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090

Machine
Ite m Instruction Remarks cycles

g 1 (x) CLA (x) 2

STO 1 GITAB x-->GlTAB t (I1) 2

TIX I, 1 INIT 3 2

TRA INIT3 1

g 2 (x) LDQ (x) 2

FMP (x) x 2 - 13

STO 1 G2TAB x --*-G2TAB + (I) 2

TIX I, 1 INIT3 TI = II - 1 2

TRA INIT3 1

g 3 (x) SSP 3 2

TZE C9 -1 2

STO COMMON 2

ANA C9 3

LRS 1 2 - 7

ADD COMMON 2

LRS 1 2 - 7

ADD CIO 2

LXA g 3 (x) 2
STO STO COMMON + 1 2

CLA COMMON 2

FDH COMMON + 1 3 - 13

STQ COMMON + 2 2

CLA COMMON + 2 2

FAD COMMON + 1 6 - 15

SUB C9 2

TiX 4,1 STO 2

Tix 1, 1 INIT3 2

T A INIT3 1

-35-

,-,~-..-, ~- -.-. -- -~ . ~ - w-
Jbp



APPENDIX IlI

TABLE JI-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090 (Continued)

Machine

Item Instruction Remarks cycles

C9 OCT 001 000 900 000

CIO OCT 100 400 000 000

SXA I TEM 2

SXA 2 TEM + 1 2

g4 (x) CLA x 2

B SUB 21T 2

CAS 27 3

TRA B > 1

TRA B 1

STO R R < 2i 2

CAS TT 3

TXI I,1 E -,1 =1 2

C TXI 1,1 E 2

CAS I/a 3
TRA D v/R 1

TRA D ir/R I

TRA SER R =R 1

E CAS 371/2 3

TRA G > 1

TRA G 1

F CLA R R-ir 2

SUB f Z

H STO R R R-it 2

TRA SER

G CLA 2! 2

I SUB R 2 2

rRA H I

D CLA ir-R 2

-36.

Odm-



APPENDIX II

TABLE 11-4 - ACTIVITY FUNCTIONS PROGRAM, IBM 7090 (Continued)

Machne
Item Instruction Remarks cycles

TRA I I

SER LDQ Z/iV 2

FMP R 2 - 13

STO a 2

LDQ a 2

FMP a 2 - 13

STO a2 aZ 2

LXA 2 3 2

LDQ 2 Cl 2

FMP a2 2 - 13

TIX 2, 1 DE 2

DE FAD 2 Cl t - 15

STO TEM 2

LDQ TEM 2

TIX 2,0 DF 2

FMP a 2 - 13

STO SIN (x') 2

TIX i10 SN 2

TRA SN + 2 ]

SN CLA -0 2

SBN SiN (x') 2

SN + Z LXA I TEM 2

LXA 2 TEM + I I

STO I G4TAB 2

TIX I, 1 INIT 3

TRA INIT3 1

gS(x) LDQ x 2

FMP TWO 2-13

37-

- -. ? ' -- ~ - l~m~11



-1 APPENDIX II

TABLE U-4 -ACTIVITY FUNCTIONS PROGRAM, IBM 7C90 (Continued)

Machine
Item Instruction Remarks cycles

CAS TWO 3

TRA A2 1

TRA Al 1

Al STO 1 G5TAB* < 2

TIX 1,1 INIT3 2

TRA INIT3 I

A2 STO TEM 2

CLA FOUR 2

SUB TEM 2

TRA Al 1

1 6 (x) CLA x Z

CAS ONE 3

TRA BI > 1

TRA B3 1

STZ 1 G6TAB 2

B4 TIX I INIT3 2

TRA INIT 3 1

BI CAS TWO 3

HLT >

TRA BZ 1

B? CLA TWO <

B5 STO 1 G6TAB 2

TRA B4 I
•.B2 CLA FOUR2

¶ -T R A B 5 ........... _ _,1

-38-

- •-•-• - • ," = . . . ,



APPENDIX II

TABLE 11-5 - LOOKUP FUNCTION PROGRAM, IBM 7090

Machine
Item Instruction Remarks cycles

CLA N 2

STO k Highest activity num- 2
ber

CLA x z

STO x 2

LOK3 LXA 2 k 2

CLA 2 ADDRXk(X) 2

STA LOKI 2

LXA 4 x 2

LOKI ("LA 4 xk(x)TAB 2

STO 2 OTAT1 Best allocation for k 2
activity

CLA k 2

SUB 1 3

CAS ZERO 1

TRA LOK2 1

HLT END =

HLT 2

LOK2 STO k 2

CLA x 2
sU B 2 OT i .3

STO x ,,

TR A LOK i

-WNW IPOP%-



APPENDIX U

TABLE U1-6 - COMMON STORAGE

Item Data Remav.ks

T4 C

T3

TZ N
STi x

! max

+6 TRA gW(x)

+5 TRA g2 (x)

+4 TRA g 3 (x)

+3 TRA g4 (x)

+2 TRA i 5 (x)

+1 TRA g 6 (x)

ADDR

S!X

TWONE

ONE

k

xk

INDI

IND2

ADDR Xk(X)

ADDRESS xI(x)TAB3

ADDRESS x 2 (x)TAB

ADDRESS x 3 (x)TAB

ADDRESS x 4 (x)TAB

ADDRESS x 5 (x)TAB

ADDRESS x 6 (x)TAB

X0

-40 -



APPENDIX II

TABLE 11-6 - COMMON STORAGE (Continued)

Item Data Remarks

ZERO

COMMON

COMMON + 1

COMMON + 2

COMMON + 3

C9

C1o

TEM

TEM + 1

C7 400.002310715 -0.00467377

CS 000.050632127 0.07968968

C3 400. 512567405 -0.64596371

Cl 001.444176646 1.57079630

'i 000. 505746037 0.6366198

3

R

2r, 006. 220773230 6,2831853

37T/Z 004. 554574363 4.7123889

V 003. 110325514 3. 1415927

0f/z 001.444176646 1.5707963

SINX'

-0

a
LV2

FOUR

-41-



APPENDIX I _ _ __ _ _ _ _ __ _ _ _ _

ýk 
I-

-- _ _ __.,1011

A42 -



APP:ENDIX III - PROG2RAMMING OF THE DYNAMIC PROGRAMMING

TECHNIQUI-. FOR MACHINE I (PARALLEL)

1. INTRODUCTION

Described in this appendix is the sample problem that was programmed

for Machine I using the dynamic programming technique. The objectives

were to develop parallel solutions and programming techniques and to

determine what difficul.ties might arise in programming fcr Machine I.

Hence, the sample problem was kept small and no attempt was made to

extract maximum parallelism and speed.

The narratives and programs for the Machine I sample-problem progrirn-

ming are detailed unier Item 2; this description revolves around six ac-

tivity functions, a maximization function, and a lookup function. The

Machine I programming resulte are presented under Item 3. Under

Itenm 4, these results are compared with those resulting from the pro-

gramming of !he same problem for a sequential computer.

2. NARRATIVES AND PROGRAMS

a. Activity Function I

The flow chart for activity function 1, gI(x) = x, is shown in Figure 111-1;

the program, in Table ll1.1; and the data vector format, in Table 111-2.

This function -s started by storing an ENBI pI', JMP 01 instruction in

the WAIT LIST. A free processor takes this instruction, enters g, into

todex registr-r 1. and jumps to GI, which is 'he address of the first in-

struction of the g I (X) activty iuriction.

Index registor 2 is -nitahized with rero, and index register 3 is loaded

with n, which .s the n-miber o! uies gl(x) is to be calculated. The

a-



APPENDIX III

-7
INITIALIZE

lo

01 . U• I! M A X

I YES

MALT

Figure 111-I - Activity Function I Fic art, Machine I

-44-



APPENDIX III

TABLE III - ACTIVITY FUNCTION 1 PROGRAM,

MACHINE I

Time

Item Instruction Remarks (Psec)

ENBI g1 30

JMP GI

GI ENB2 4 30

LDB3 1 2 n

LDA 1 30

NOP

G1 + 2 STA 12 3 30

ADD 1 1

LRS 72 30

LDA GIM

INAL 2 3 30

STA 2 MTEM

LDA GIM + 1 LDI , JMP MAX 30

BGN 2 MTEM

LLS 72 30

ISK2 3

iMP GI + 2 30

HLT

CIM u 0

GIM÷1 0

LDI-

JMP MAX

.45-



, P" - A- :

APPENDIX III

TABLE 111-2 - ACTIVITY FUNCTIONS I AND 2 DATA VECTOR

FORMATS, MACHINE I

Function gl(x) ,Function g,(xj

Addrees Data Address Data Address Data

gl x x g + 24 TEMP x

+1 A gI + I A g + 25 Tt.MPx + 16

9. + 2 n g2 +Z , g2 + 26  TEMP x + 2A

g,+3 g 2 + 
3  xg 2 +

2 7  TEMP x +3A

2
.+ g+ + 4  x g, + 28 TEMP x + 4A

2
g9_ + 5 xI z 2 + 5 x. 2 g2 + 29 TEMP x + 5A

g+5 + g2 + 4 g2 + 9 TEMP x + 5AS~2

4i + 6 xg 2 + 6  x g2 + 30 TEMP x + 6A
2

2

2g1 + 9 x6 g2 + 9 g )+ 33  TEMP x +9A

g1 + 10 x7 10 x 7  x7 2 + 34 TEMP x + 10L
2

+l + 11 x8 g2 + 11 x8 2 + 35 TEMP x + I1A

91 + 12 x 9z + 12 x g2 + 36 TEMP x + 12A
2

1 I + 13 x 0 g2 + 13 x10 g2 + 37 TEMP x + 13A

g, + 14 x11 g2 + 14 x11 g2 + 38 TEMP x + 14A
2

+ 15 x 12 g2 + 15 x12 2 2 -+ 39 TE.MP x r 15A

16 X13 g2 + 16 x13 92 + 40 TEMP x + 166

91 + 17 x14 92 + 17 x14 92 + 41 TEMP x + 17A

2gl. + 418 xi15 g2 + 18 x 15 lg2 t+ 42 TEMP x + 18 t,

g, + 19 x16 92 + 19 x! g) + 43 TEMP x + 19a

S+ 20 x 7 gz + Z0 x g2 . + 44 TEMP x + 206

gi. + 21 x11 
x 1 2 91,

1i 18182

Ri + 22 x19 92 + 22 x19

g .Z3 x 2 0  92 + ?. x20

-46.



777I

APPENDIX III

contents of the first location of the gl vector, which is x, is then stored

in the third word of the vector. Here x is the initial value of the vector

from which all subsequent values of the activity function are calculated;

it is increased by 6, then shifted into Q, and a series of instructions is

executed to enable the starting of processors to operate on the maximi-

zation routine.

The maximization routine needs the beginning address of the vector and

the value of the resource for which activity function returns are currently

availabie. For every return calculated for the gl(x) activity function, a

processor is started. The information transferred to this processor is

u o, and j.

Inserted into the address field of tle instruction at GIM + I :s the loca-

tion where the contents of the index registers are stored. The instruc-

tion is then stored in the WAIT LIST for an available processor. The con-

tents of Q are now shifted back into A. Index 2 is tested to determine if

all iterations have been completed. I rot completed, index 2 is incre-

mented, and the loop is repeated. When index 2 equals 21, the operation

is halted.

Successive values of the function are stored in successive locations of the

vector. Each location has a unique name as determined by B1 + B2 + 3;

BI equals g,; 1• is incremented by 1 for eacn iteration. Saccessive

names of elements of the vector are g4 I 0 + 3, g 1 + I . 3, gl + 2 +

3 + . . . .

b. Activity Function 2

The flow chart for the g)(',) x activity function is shown in Figure 111-2;

the program in Table 111-3, and the data vector format, in Table 111-2

along w th the gl(x) fornmat.

This function is started in the same manner as activity function g,(x).

When, there i-. an ,vailable proce.,s.r and the JMP G2 is executed, zero is



APPENDIX UI_

STARtT

INITIALZEI

g2' n

2,( .• j~

NO

YES

H IIý

1FMAi.

:• ~~F'gur•' •:-2 - AU,,.vitv Fu•,.¶ion 2 Flow Chart, Machin~e I

, .4S -



APPENDIX III

TABLE 111-3 - ACTIVITY FUNCTION 2 PROGRAM,

MACHINE I

Item Instruction Remarks Time (jasec)

ENBI g2  30

iMp G2

GZ ENBZ 9 30

LDB3 1 2 n

LDA 1 30

NOP

G2B' STA 1 2 3 3 60

FMP 1 2 3 3

STA 1 2 3 30

SEH 1 2 3 3

LDA 1 2 3 3 30

FAD 1 I

NOP 30

151(2 3

iMp GZB 30

HLT

entered into index 2, and BI + 2 = n is entered into index 3. The initial

vaiue of the data vector, x, is stored temporarily in an address equal to

B1 4 B2 + B3 + 3. On the first execution of the r, utne, this addrebs is

equal to g2 + 0 + n t 3. In subsequent executior.s. BZ is incremented tip

to a maximum of n = B3. Her-ce, for each execution there is a unique
2

ternporary sturage address whgre xI is stored pri.or to forming x i
2.

Then x1 if stored in the data vector at tlh address eqjal to BI + B2 # 3.

Nuw x. is erased, and this location I.,ecomes an available word of Memory

capable of bei•i na•ned and used by awather routine. This routine is re.

peated n times untii all valves of the activity funi.tiin have been calculated.

Activity functions S1 (x) and g2 (x) are quite simplt. x'rcept for the method

of starting the processors, they could be run on a saiential Machine.

-49-.



APPENDIX III

c. Activity Function 3

The flow chart for the g3 (x) -V/'xactivity function is shown in Figure 111-3;

the program, in Table 111-4; and the data vector format in Table 111-5.

This function is started by transfer.ring indices g3 ' 2, and 0 to an avail-

able processor and jumping to the subprogram, INIT. Indices g3, 2,

and 0 are in the 31 table, and the LDI /31, JMP I instruction is stored in

the WAIT LIST to start-an available processor.

The term, /31, designates index values that are used as inputs to the I

subprogram; and /32 designate index values used as inputs to the LOOP

and Q suoprograms. Each time one of these indices is stored, an instruc-

tion is also stored in the WAIT LIST. This instruction has the pertinent

and subprogram address to enable the processor to acquire the index

values and to jump to the appropriate subprogram. Since the index trans-

fer operation is complete at the time of the jump to the subprogram, and

since the index value in the 03 table is no longer of use, this information

is erased from the /3 table.

Three more processors are started with indices 93' 0, and 0; g 3 ' 1, 0;

g 3 , 2, 0. These indices are stored in 02 and are used to start the sub-

program LOOP. Each time a processor is started on LOOP, another

one is started on subprogram Q.

The g 3. Z. and 0 indices sent to the i program were tie beginning of a

tree of indices generated to permit parallel calculation of the square roots.

With an index of i = 2 as input to the I program, 2i and Zi - I are gener-

ated and used as inputs to the I program and to the LOOP prc'iram; 2i and

2i - I in turn generate 4,, 4i - 1. 4i - 2. anJ 4i - 3. Eventually, a calcu.,

lated index exceeds the vector size and index calculation .,,dts.

The LOOP Subprogram calculate# the square root using Newton's itera-

tion. The Q program determines whether the exponent is even or odd, to

determine the exponent ui the square root.

In addition to the da.A vector generatedi b% the program. three other

-50.



APPE

S IA RT 63,1. 0

7 83'

N! 7

2i +

I N O I T N C

Lu'

AN



APPENDIX I__

12 0. 0 TART

83,1, 0

= s•. 2ý 0

0 7 STA7 3 = 83."-,0

N x + iA = 63, 1'0

1,2,07YES 0= OCODD~

+) + - N

+.. + VI2
g + L ,

NO ,

Fig•te 111-3 - Activity Function I Flow Chart, Machine I

-StB



APPENDIX III

TABLE 111-4 ° ACTIVITY FUNCTION 3 PROGRAM!

MACHINE I

Item Instruction Remarks Time (jasec)

LDI (3 30

JMP INIT

INIT LDA LI Bl, B2, B3 30

BGN OI g 3 ' 2 , 0

ENB2 $ 30

ENB4 2

INIT 1 STI j32 30

LDA W2
BGN 32 30

INB2 1

BJP4 INIT 1 30

HLT

LDI Ol 30

JMP I

Bl, B2, B3

SEH 0" 30

LDI O( 1
INB2 2-1 i 'i -1 30

ENA 2 0

COM I 2 Zi 1:n 30

HLT

STI (1 30

LDA L431

BON 3l Ol 30

STI (32 j , B4, B.3

.53-



APPENDIX 1I1

TABLE 111-4 - ACTIVITY FUNC'ION 3 PROGRAM,

MACHINE I (Continued)

Item Instruction Remarks Time (Weec)

LDA L02 2i -1, 0 30

BGN 02

ENA I i 2i

COM 1 2 2i:n

HLT 30

STI 3l

LDA 31 01 30

BGN 31 B 1, B2, B3

STI 32 g3' 2i, 0 30

LDA L32

BGN 02 30

HLT
Lo 1 LDI

JMP I

L32 LDI . . .

JMP LOOP

LDI 02 30
JMP LOOP

(32

Bl, B2, B3

g3 , 0, 0

LOOP SEH 032 .3' 1, 0 30

LDI !32 g3 ' 2, 0

STI 02 93, 1. 0 30

LDA L3

-54.



APPENDIX III

TABLE 111-4 ACTIVITY FUNCTION 3 PROGRAM,

MACHINE I (Continued)

Item Instruction ,ternarks Time (slsec)

BGN 03 30

ENA Z

FMP I I iA 60

FAD I
STA 1 Z TZ ni 30

AND f MASK

STA I 2 T3 f 30

ARS 1

ADD 1/2 30

STA 1 Z1"1

ENB4 2 30

NOD

LOOP I LDA 1 2 T3 60

FDV 1 2 T g

SEH 1 2 TI 60

FAD 1 2 TI

FDV 2 60

STA 1 2 TI

BJP4 LOOP 30

HLT

L3 LDI . . . 30
3MP Q

LDI 03 30
JMP Q

Q SEH 03 30
L.D! 03

LDA I z T2 30

AND QIMSK Exponent Bit I

,55.



APPENDIX Il

TABLE 111-4 i.,,CTIVITY FUNCTION 3 PROGRAM,

MACHINE I (Continued)

Item Instruction Remar'.ks Time (Aisec)

JNZA QA Q1 0 30

LDA 1 2 TZ Q1 0

AND QMSK Exponent 30

NOP

QB ARS 1 30

ADD 1 2 Ti Fraction

STA 1 2 2 r 30

HLT

LDA 12 TZ 30

AND QMSK

ADD Qi 30

JMP QB

temporary vectors, TI, T2, and T3, are generated to hold (1) the initial

calculated guess of the square root, (.) the number itself, and (3) the frac-

tional part of the number.

Temporary storage appears to be sizeable. The temporary addresses are

actually reserved addresses not necessarily occupied. Only a portion of

this block would be filled at any one time, since processors operating on

the program &re continually started and stopped as data are entered, used.

and erased. The addresses when occupied are not available for use by

other processors. However, when the data is erased the location is then4
free.

In a conventional memory, temporary storage ts defined ,As a certain biock

of words occupied at a certain time. This area cannot be used otherwise

to store instructions or data.

-56.

WiI~~..upw... - P"



APPENDIX III

TABLE 111-5 - ACTIVITY FUNCTION 3 DATA VECTOR

FORMAT, MACHINE 1

Function g3 (x) Temporary vectors

Address Data TI T2 T3

93 x

g3 + Z n

93 +3 V O go N0 10
g 3 +4 g1 N 1  fL

'93 + 5 -. g2  N2 f2

93 + 6 x3 93 N3  £3

93 + 7 8V4 94 N4 £4

93 + 8 r5 95 N5  f5

93 + 9 V 96 N6  f6

93 + 10 8 97 N7  f7

93+ 11 N 8 fa

g 3+ 12 f9 N9 9

93 + 13 , -10 N10 f10

83 + 14 9 N 1  '

15 fl2 N 2  f

1(3 + 16 13 N1 3  ft3

83 + 17 l4 N 4  f

93 14 914 14• NI1493+18 95Nf
15 -5i 15

23 * 9 J -Tb 916 N16  f1

934+0 "17 q117 1 7

IN 18 19

81922 N,9
V3 0 N2 0

-5?-

i
S. . . ...... • 1 II I I -' ' • ° L- '



I.
APPENDIX III

In the Machine I memory a portion of each word is used to denote the

name or address of the word. Any word cani have any name that is repre-

sentabie in the 24 hits of the name field. In addition, any unnared word

is available for use by any program at any time.

It is possible through indiscriminate naming to have common names in a

number of programs, which situation may be undesirable. Hence, where

a large number of programs are running, a portion of the name field, the

prefix, should be used to isolate names to a particular program. Such a

prefix name is unique to a particular program. The original name plus

the prefix constitute a unique narre for the individual program.

During the study, the unique prefix names were carried in index register 1.

The other indices and address fields of the instructions were used to gen-

erate the suffix names.

d. Activity Function 4

The flow chart for the g4 (x) = 2 sin x activity function is shown in Fig-

ure 111-4; the program, in Table Il-.6; and the data vector format, in Ta-

ble 111-7.

This function is composed of six subprogram- HSIN, SER, SIN (i t j)A.

COS (i + j)A, SIN (x 4 jA) anid COS (x + ja). HSIN computes a and a for

the input, x, and also 8 and6 for the input, A; 0, 0 , €. and6 are inputs

to StLR for the calcuiation cf in x. cos x sin a. and cos A.

Sin 2a and cos 2A are calculaed. and a tree is started to generate in-

dices that pvrnit calculation o, sin i_. cos ;i. • n (, - 1).N, and cos

1i - 1)A for i > 2. 1 or eav:h inc.remental ang',e the sin x * iA and cos x +

14 are cLuiputecd and stured io the outamt dflta vector.

To start thc SIN rmititr, i,•i~ 4 0, 0 n•d znde% , I. S. 0 are trans.

terred to t-vu ahle prokc-vsrorb. Nivothe units ,exevute the HSIN subpro-

gram. mne %o'kirng with x and the other working with A. After 0. a ,

and are 4 t't-a1Vd, totir prlccssor$ -ire started, each executing the

iF. $I>) T -*4),po a ri a ~n x. , o zix.sn A1 4110 08 4a. ThO



APPENDIX _I_

START/
0' .0 84. S.

1 + I I

' x CO 1 a ) +

A 0- cs() + cs(") + MALI

Cz7) + V

I -

I *

sm ,, pjA -|Cos. ÷j, + -"
$IN i co A ,.OSj, /Cos i N Cos il -

COS i, sN SI 9ASIN iA SIN j'%

SI• COS %

S-- --- - - .j x "

Figure U1- 4 -Activity Function 4 Flow Chatrt, Ma~chine I •

MAAk

S I

~~I -.. .... ... . . .IKl



APPENIX III

TABLE 111-6 -- ACTIVITY FUNCTION 4 PROGRAM, MACHINE I
iil - - -.. .

Item Instruction Remarks Tirme (pasec)

p P 30

iMP HSIN SI, BZ, B3
84, 0, 0

8 4 +l' 5, 0

HSIN SEH p 30
SWLDI p

LDA I x or A 30

NOP

HS FSU 21 60

NOP

COM 21 30

JMP HS

STA 1 2 3 R or r 30

NHA

ARS I y A 30

STQ 1 2 5 $ein x, $in 6
LRS 1 30

STQ 1 2 8 cogX. *CosA

HSZ SEH 1 2 3 30

LWA 1 2 3 R or r

FMP 2/1 60
STA 1 2 3 a or

LAC 1 2 3 30

*4 STA I Z 6 0 or-'

DiP3 HLT 30

NOP

HSI ENB4 3 30

NOP • output

.60.



APPENDIX III

TABLE 111-6 , ACTIVITY FUNCTION 4 PROGRAM. MACHI":E I (Coitt•,tdeu)

Item Instruction Remark* Time (daec)

HS3 LDI 4 k B1, BZ, B3 30

STI k, g4 , 3,Sa

LDA L +i, g4 , 6, Ca 30

BGN $ +2, g4 ' 9, S&

BJP4 HS3 t3, $4 , 12, C. 30

HLT

L LDI

iMP SER
y 21

'V )T/2 ++ -
22:

viz/

L.DI 30

iMp SER

B3. B22 B3

94 0 3, S

SER SEH 94 , 6. C 30

LDI g14, 9. S

LDA 1 2 4& 4 Iz. C 60

TMP 1 2 I
STA 1 2 1 6,1)

FMP C9

FAD C? 60
Fulo 1 i! 1

FAD CS

i

,,|, ,, .. . ...

_ _ _ _ _ _ _ _• _ _ _ _ _ _ _ _ _ _ _ _



ji APPENDIX III

TABLE 111-6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I .(Continued)

Item Instruction Remarks Time (psec)

FAD C3 6o

FMP 1 2 1

FAD Cl 60

FMP 1 2

STA 1 3 30

LDA 1 2 2

AND SMSK 30

SEH 1 3

OR 1 3$ 30

STA I 3 sinx, coo x,
sin 6, cos A

INB2 -12 30

BJP2 SER I

HLT 30

NOP

SERI ENB2 I START SIN (i + j)a 30

ENB3 1 COS (i + D)A

STI m 30

STI n

LDA N 30

BGN m

SER2 LDA Sa 30

NPZ SER2

SEH So 30

FAD S*

STA so 30
NOP

SER 3 LDA Ca 30

NPJ SER3



APPENDIX III

TABLE 111-6 ., ACTIVITY FUNCTION 4?.ROGRAMj MACHINE I (Continued)

Item Instruction Remarks Time (psec)

SEH Ca 30

FAD Ca

STA Ca 30

LDA N+ I

3GN n 30

ENBZ

STI g 30

LDA P START

BGN g SIN(x +jz), j 1 30

STI h COS (x + jA), j = 1

LDA P+1 30

BGN h

HLT 30

NOP

N LDI

JMP SIN (i + j)A

N+l LDI . . .

iMp COS (i + j)&

LDI m 30

iMp SIN (i + j)A

SIN (i + j)& SEH M 30

ADD m BI, B2, B3

SijA LDA 1 2 S4 g4 . is j 30

NPJ SijA

SijB rMP 1 3 Ca 60

NPJ Sija

STA 1 2 3 S&T (i + J)TEMP 30

NOP

SijC bJDA 3 SA 30

.63.



APPENDIX III

TABLE HI-6 - ACA'IIITY FUNCTION 4;PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (Msec)

NPJ SijC

SijD FMP 1 2 CA 60

NPJ SijD

SEH 1 2 3 SAT 30

ADD 1 2 3 SAT

STA 1 2 3 SA 30

INB3 2

STI g g or table 30

LDA P

BGN g B1, B2, B3 30

STI L 94, 0, j

LDA P+ 1 30

BGN h

HLT 30

NOP

p LDI .

JMP SIN (x + j&)

P+ 1 LDI h

JMP COS (x + JA)

LDI n 30

JMP COS (i j)&

BI, B2. B3

9 4 . 1, J

COS (i j)A SEH n 30

A•D n

LDA 1 2 SA SIN iA 30

NPJ

SFMP 3 SA SIN JA 60

NPJ

.64.



APPENDIX III

TABLE _U-6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (psec)

STA 1 2 3 CAT (i + j)TEMP 30

IDA 1 2 CA

NPJ 60

FMP 1 3 CA

NPJ 30

SEH 1 2 3 CAT

SUB 1 Z 3 CAT 30

STA 1 2 3 CA

INB3 2 i + 30

ENB2 3 -1 i+j -I

LAC 1 2 -n 30

INA 2 3

JNGA CA 30

JNZA HLT

CA STI e 30

IDA M

BGN e LDI, JMP, SijA 30

STI f

IDA m + 1 30

BGN f LDI, JMP, Cija

INB2 1 30

LAC I 2 -n

INA 2 3 $ 30

JNGA CB

JNZA 30

NOP

CB STI • 32

L'A M LDI JSMP SijA

BGN •30

obS -

. • • • s



APPENDIX III

TABLE 111-6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (Psec)

STI f
LDA m + 1 30

BGN f LDI , JMP CijA

ALT 30

NOP

LDI g

JMP SIN x + jA

SIN (x + j&) SEH g BI, BZ, B3 30

ADD g g4 ' 0, j

LDA Sa 30

FMP 1 3 CA COS jA

NPJ 30

STA 1 3SaT

LDA Ca 60

FMP 1 3SA

SEH 1 3 SaT 30

ADD 1 3 SaT

STA 1 3 Sa SINx + jA 30

LDA GAM

INAL 3 3 30

STA 3 mtern I

LDA GIM + I START uZ MAX 30

BGN r rnteml

!-HLT 30

NOP

G4rn U.) 0

0I

SLhI 30

-66 -



APPENDIX III

TABLE 111-6 - ACTIVITY FUNCTION 4 PROGRAM, MACHINE I (Continued)

Item Instruction Remarks Time (Msec)

JMP COS (x + jA) 30

COS (x + jA) SEH h 30

ADD h

LDA Sa 60

FMP 1 3 SA sin jA

STA 1 3 SaT 30

LD Ca

FMP 1 3 C& cos jA 60

NPJ

SEH 1 3 SaT 30

SUB 1 3 SaT

STA 1 3 Ca COS (x + jA) 30

HLT

indices transferred to the SER processors are g4 # 3, Sa; g4 ' 6, Ca; g4 ' 9'

SA; and g4 ' lZ. CA; g4 is the prefix name; 3, 6, 9, and 12 are data vector

addresses, relative to g4 ' of the input variables a, a .6. andS*,; So, Ca,

SA, and CA are initial addresses of the output data vectors.

The SER subprogram generates one set of indices to start the SIN (i + j)A

and COS (i + j)A subprograms and also generates one index set to start the

calculation of sin x + A and con x + A. The index set that starts the SIN

(i + j)A and COS (i + j)A subprograms is used to generate the tree of in-

dices that are, in turn, inputs to the SIN (i + j)A, COS i + j)A. SIN (x +

jA), and COS (x 4 jA) subprograms.

The indices transferred to the processor executing the HSIN subprogram

are erased, and x or A is then normalized mod 21F. The normalized

quantity is next compared to the four quadrant angles, each of which has

stored in its lower two bits the correct signs of sines and cosines of angles

.67.

WNW-i



APPENDIX Mf

t~ .I .I . . . . .• .. ,, ,.. . . .l .

4 444 4 4 444 4 444 444
44 < 4 44 ' 11

SE- In a o i i i 0% tv

> go 0 •••

M V wi 10 f- a Q. a
44- ÷ - N f 4 I10 4 ÷

":D -- " " r"" " a"" "

* 4+ + + + . . . . . + + . . 4.. . . . .

.. .. ... . .. . . . + +..

a5 r a a a a 'm a to a a a s a a43ts.1r
a d a a a a a * * * * * * * * *

CPa
NOw W- 0 N d 4 A, r0

+ +

4 ; *•i a a••, • a a- a i a v• • • • _" -"-"- - • •

4 44 444444 s

4444+ +4
0 ~ ' 4' 2 0 .



L
APPENDIX IMI

within that quadrant. The NHA y instruction obtains the smallest quadrant

angle larger than the argument in the accumulator and replaces the con-

tents of the accumulator. The sign bits are shifted into Q and stored.

Now a and 8 are computed, and the indices to be transferred to the SER

program are slored prior to starting the iour SER prbcessing units. The

SER program computes sin x, cos x, sin A, and cos A from inputs a, a ,

8, and 8* using the Hastings Sine series. The processing unit that com-

putes cos A generates indices and starts instructions for the processors

to begin executing the SIN (i + j)A, COS (i + j)A, SIN (x + JA), and COS

(x + jA) subprograms.

The SIN ,i + j)A subprogram gets its input indices from a temporary table,

after which the indices are erased. The product sin iA., cos jA is found

and added to sin jAt cos iA and stored. Nonpresence jump instructiors

are used to be certain that the words fetched from memory are the exact

ones requested. The SIN (i + j)A subprogram also generates indices,

which are transferred to processors assigned to the SIN (x + JA) and COS

(x + jA) subprograms.

The COS (i + j)&t subprogram gets its index inputs from a temporary table

in a similar manner to the SIN (i + jA) subprogram. While the computa-

tion is similar to that for the SIN (i + jA) subprogram, the COS (i + j4)

program generates indices that are used by the SIN (i + j)& and COS

(i + j)A subprograms to generate mor-3 branches of the tree x + j4. For

each i, j input, 2 sets of indices are generated: j = + j, i a j - I and

j = i + j, i j. Hence for i 1 1, the inputs are j I 1 and the output sets

are i = 1, j a2 andi z 2, j 2. These in turn generate i a 2, j a 3,

i = 3. j = 3 and i 3 j a 4, 1 a 4, j v 4.

For each set of indices sent to the SIN (i + j)&t subprogram, the sum j a

i + j is sent to the SIN (x + jA) and COS (x + jA) subprograms. For each

additional SIN (x + j4) subprogram generated. there is a processing unit

assigned to the u, maximisation program.

-69 -



APPENDIX III

a. Activity Function 5

The flow chart for the gS(x) activity function is shown in Figure II-5; the

program, in Table 111-8; and the data vector format, in Table 111-9. The

returns calculated from th1i function are

Zx if 0 1 x 1
S~~g5 1 x ) =.

g\4 - Zx if I 2

The gs(x) function is executed by transferring the address of the g5 data
vector to a processing unit and jumping to G5. Index registers 2 and 3

are initialized with 0 and n; x is obtained fromthe data vector and stored

in (1) a temporary word at the end uf the data vector and (2) the first

word of the output portion of the data vector.

The ittrative portion of the program begins by fetching and erasing the
temporary word = x, adding A to it, and storing x + A back in the tem-

porary location. The incremented value in A is now doubled and tested.

If 0 - X § 1, then the doubled value is stored in the data vec or at the

address BI + B2 + 4. If I - X - ., then 4 - Zx is stored.

Index 2 is now compared to index 3. Index 2 carries the current itera-

tion number, while index 3 carries the maximum nu-.ber of iterations

to be performed. If the maximum has not been exceeded, the program

is repeated with index 2 incremented. If the maximum has been reached,

the processing unit halts.

f. Activity Function 6

The flow chart for activity function gj(x) = 2(x) is shov-n in Figure 111-6;

the prog:'am, in Table 111-10 ind tt'e data vector format, in Table 111-9.

along with the g5 (x) format.

This function is started by tranuferrng the address of the g6 data vector

to a processing unit aiid jumping to G6- x is obtazred from the 'irst word

of the• vector' and stored in a ternporary 1o,#tion t ii x is le.s than 1,

zero ts stored in the data ver'or' if x is equal to or greater than I but

-70-



APPENDIX IlI

TAR

+ n + I

I I
-I--

2

ax % -2

YES

Figure IU-• Activit) F•rnction 5 Flow Chart. Machirie I

-71 -r



'APPENDIX III

TABLE 1114 - ACTIVITY FUNCTION 5 PFOGRAM', MACINE: I.

Item Instruction Remarks Time (psec)

ENBI 95 30

JNP G5

GS ENBZ 30

LDB3 1 2

LDA 1 30

STA 1 3 3

STA 1 3 30

NOP

G5B SEH 1 3 3 30

LDA 1 3 3

ADD 1 1 30

STA 1 3 3

ALS 1 30

INA -2

JNGA GSA a 30

JNZA GSA

INA 2 30

STA 1 3 4

ENA 4 30

SEH 1 3 4

SUB 1 4 30

SIA 1 2 3 4

GSC ISKZ 13 0 30

JNP GSB

JHLT 30

NOP

GSA INA 2 30

STA 1 2 4

iMp 0SC 30

NOP

.720I,, ,

-mm- mm n m .-mmmm -mm m . . . '- m "... . . . .- • . . ..

• m m mlmm m i -•. "- •n Ie



APPENDIX III

TABLE 1MI-9 - ACTIVITY FUNCTIONS 5 AND 6

D tA VECTOR FORMATS5 MACHINE I

Function 85(X) Function 86(x)

Addreas Data Address Data

S1 x 4 x

8S + 2 n 6 + I n

SS + 30 86 4 $ 0
SS + 4 xi 46 +4 x1I

65+ 5 x2 86+ 5 x2

6 ÷+6 X3  4 " +93

85+7 x4 4 + 7 24

85 4 6 r.5 16 +÷ 8 xS

85 + 9 X6 816 +÷9 X6

15 +410 X? 86+10 x

I~S+11 4 46+11

IIS + 12 X9 +112

S + 1+ 103 x10

15 + 14 x 16 4+ 14 x1|

6S + IS xZp of, + IS xl

65 ÷ 16 x ll 4 + 16 X 11%

#54* 17 x 14 46+ 17 x1

as+ xis 4514 Ns

I4 4 419 i16

S l420 Nxl
IS + •ixil 84 21 mli

6$ * 13 120 4" 1) NI,

1S # 24 TIKP t6 TxZP

5 # IS 1P 4 iTEMP. I

++ • + ,,.• ;7 .. .. ... . .. . ... . i • - . . .7 3- +



APPENDIX Mit __

START

INITIA LIZE

Sgj,

n-V~j +js4g++

'55

~lfl

*..................

S ~~~~Figutr e ll- (.• A c't ivit y" Fu nc-t ion 6' Flow C h art, M ac¢hine I

S• - 7"4 .



APPENDIX III

TABLE.III-10 - ACTIVITY FUNCTION 6 PROGRAM, MACHINE I

Item Instruction Resrarks Time (psec)

ENBI g6  30

JMP G6

G6 ENB2 $ 30

LDB3 1 2 n

LDA 1 30

JMP G6E

G6D LDA 1 33 30

ADD 1 1

G6E STA 1 3 3 30

COM 1

JMP G6A 30

LDA

G6B STA 1 Z 3 30

LD.A G6M

INAL z 3 30

STA 2 MTEMZ

LDA GIM + I LD!_, TMP MAX 30

BGN MTEM Z

151(2 3 0 30

JMP G6D

HLT 30

NOF

G6A COM 2 30

iMP G6C

EAA z 30

G6C ENA 4 30

iMP 06B

U3 0

0 1

-- -m, W A~w

.75*



AP!PENDIX rn

leqe than 2, then 2 is stored in the data vector; and if x is equal to or
greater than 2, then 4 is stored in the vector.

For each value stored in the data vector, a processor is started on the u 3
maximization program. The resource for which the value of the activity

function has just been calculated is transferred to the u3 ma.imization
program. This enables u13 to begin the maximization process to deter-
mine what allocation of this resource will result in the maximum return.

Maximization Function

The flow chart for the maximization function is shown in Figure 11I-7;

the program, in Table III-11; and the data vector format, in Table 111-12.

The maximization routine is started by storing an LDI___ JMP MAX in-
struction tki the jump tabie. The address of the LDI instruction is the
address where the indices to be transferred are stored. These addreeses -

namely, MTEM + B3, MTEM I + B3, MTEM Z + B3, MTF:M 3 i B3, and
MTEM 4 + B3 - contain, respectively, the indices for execution of the

maximization for function u1. u2, u3. U4 and uS. Index register I is used

to hold address V uV, u,, u4 , or uS; index register 2 is initially nero;

and index register 3 carries j, which indicates the maximum value of re-

source for which returns are currently available. As ahe function returns
are being calculated, processors are being startes with the index :uVorrna-

tion in the MTEM tables.

Index register 4 in loaded with the address located in the second word of
the data vector whose address is in index register 1. The contents oi in-
dex register 1 can be u1 u., u, 3 N4 or u5. CorresponJingly, -word I of

these data vectors contain the address of the first return in data vector*

,Sl' 13954 1 U, , or u14. Word 2 of each u vector contains the eddress of
the first return in data vectors 92' 14 + 15. 86, u3, or uZ. Index register

5 is loaded wita one of these corresponding addresses.

The coments of the address are the sum of the contents of index ruieitere
3 and S. If this address is present in the memory. the contentt are loade4
into A. BS a ga and B3 v 5 a j + 3, then the return from fuiedttongS

-76-

• :.• :--. . . • , • . • • , • . . .•-.•. .• ..



AFPEINDXX III

STRTINITIALIZE

*gk 
+JPRESENT 

No

+IPRESENT NO

YES

+i~ i *+ + 3

Ei::j I j. +

NNO

NOA VIE

Fitgure LU-? Maximization Function~ Flow Chart, MacMn. 1



APPENDIX III

TABLE III-I I MAXIMIZATION FUNCTION PROGRAM, MACHINE I

Itern Instruction Remarks Time (asec)

LDI 30

JMFI MAX

MAX LDB4 I 1 Inputs 30

LDB5 1 2 BI, BZ, B3

LDA -cr Ul, 0, j 30

STA 1 2 3 3 u 2 , 0, j

MAXA LDA 3 5 $ u 3, 0, j 30

NPJ MAXA u4 , 0, j

MAXC ADD 2 4 $ u 5 , ,j 30

NP. MAXC

AND LS24 30

1NA 3

STA 1 2 3 3 30

SEH 1 2 3 3

.ADD 1 2 3 3 30

BJP3 MAXB

ENB3 2 30

ENA u

INA 1 30

JNZA MAXE

JMP MAXD I)Ou 5  30

NOP

S MAXE ENA U 3 30

INA I

,JNZA HLT 30
LDB I u 4 DOu 4

SENB2 30

-78.-



APPENDIX III

TABLE I11-I1 - MAXIMIZATION FUNCTION PROGRAM. MACHINE I(Continued)

Item Instruction Remarks Time (psec)

STI 3 MTEM3

LDA GIM + I LDI MTEM3 +
B3, JMP MAX 30

BGN 3 MTEM3

HLT 30

NOP

MAXD LDBI u 5  30

ENBZ

STI 3 MTEM4 30

LDA GIM + I LDI MTEM4 +
B3, JMP MAX

BGN MTEM4 30

HLT

MAXB INBZ 1 30

IMP MAXA

ML LDI

iMp MAX

MTEM U1  0

o j
MTEMI u 2  0

0 j

MTEM2 u3 0

o j
MTEM3 u4 0

0 j

MTEM4 u5 0

-79-

-i __.m~~~~~ 0- fimw ni

• -- - - t,-"lw"-.• •,a •.•.•.... ....IV1 ,4



APPENDIX III _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TABLE MI-l 12 MAXIMIvZATION F UNCTION DATA VECTOR FORMAT.

MACHINE I

Function u, Function u, Function u3  Function u4  Function us

u3 U u u

1 4

£2 94 +15 96 U3 Uz

U 1(0): YI(o) u)(Q). yz(o) U3 (1): Y2(o) U 4(1): Y4 (1) Us~0 1 . YS(o)

U112): yl(2) U2(2): Y2(2 ) U3 (2 ): Y2(2) U4(2): Y4 (2 ) 5(2): YS(Z)

Ul() yl3 U2 (3 1- Y2(3) U 3 (3 ): Y2( 3 ) U4 ( 3 ): Y4(3) U5 ( 3 ): Y5(2)

U1 (4): yl(4) u,( 4 ): Y2(4) U3(4): Y2(4 ) U4(4): Y4(4 ) 5S(4)' Y5(4 )

U1 (5): Y1(5) U2 (S): Y2(S) U3(5): Yz(5j U4(5): Y4(5) 5s(5)* YS(5 )

u1 (6): Y1( 6 ) UZ( 6 )' Y2( 6 ) U3 (6 ): Y2( 6 ) U4(6): Y4(6 ) 5S(6)' YS(6 )

" 1(8): Y1(8 ) U2(8 ): Y2( 8) U3(8): Y2(8) U4(8): Y4(8) US(8): Y5(8)

" 1(9): YI(9) u 2 (9 ): Y2(9 ) U3(9): YZ( 9) U4(9): Y4(9) 5 (9): Ys( 9 )
"1I(10): 71(10) u 2 (10): Y200O) U3 (10): Y2(10) U4 ( 10 ): Y4(10) US( 1 0 ): YS(1o)

u 1(12): Yl 1 2j) U2 ( 1 2 ): Y2 (1) 3 (1 2 )' YZ( 12) U4(1 2 ). Y4(l 2 ) U 5 (1 2 ): Y5( 12)

uj(1 3 )* yl( 1 3 ) U 2 ( 1 3 ): Y2 (1 3 ) U3 ( 13 ): YZ (13 ) U4 ( 13 ): Y4 (13 ) U 5( 1 3 )*: YS(1 3 )

Ul ( 1 4 ): yj(1 4 ) U2 ( 14 ): YZ(14) U3( 1 4 ): YZ( 14 ) ' 4 ( 14 ): Y4 (1 4 ) ' 5( 1 4 ): YS( 14 )

u10 6)' Yl( 16 ) '2( 1 6 ): YZ(16) U3( 16 )" Y2(16 ) ' 4 (1 6 ): Y4 (1 6 ) ' 5 01 6 ): YS( 16 )

Ul1) yl( 17) 'Z( 1 7 ): YZ(17) U3(1 7 ): YZ(17) ' 4(17)* Y4(17) US( 17 ): YS( 17 )

U 1118): yj(j*) UZ( 18 ): YZ(1S) UJ( 1 8): YZ(18) ' 4 (18): Y4(Ig0) ' 5 ( 1 8): YS( 18)

U j(i9): /1(19) u 2 ( 1 9 ): Y2(19 i u)( 19 ): YZI 19) ' 4 ( 1 9 ): Y4(l 9) UU,(19 ) . YS(19)

1(20): Y1(2 ) 1 2 (a 0 ). Yaw2 ) 1U3( 2 0 ): Y2(20) IU4 ( 2 0 )' Y4(20) U 5 (2 0 ): YS(20)

-so-



APPENDIX III

for a resource allocation of 0. 2 is loaded into A. Similarly the return
for a zero resource assignment to function g, is obtained via B4 and BZ

and added to the previous con'-ents of the accumulator. The least signifi-
cant 24 bits of the sum are replaced by (B3) = j. The contents of A, bits
24 to 7 1, are npw the sum of the returns from activity function 92 and g,
fur resource assignments of 0. 2 to g2 and 0 to g,. The 3, representing

the assignment of 0. 2 units to g2 ' is stored in the least significant 24 bits;
A contents are ctored in data vectors u1 at the address that is the sum

of the contents of index registers 2 and 3 plus the contents of the address

position of the instruction; or BI + B2 + B3 + 3 = ul + 0 + 2 + 3.

For a resource of 0. 2, there are now 2 more possible allocation sets:

0. 1 to g2 and 0. 1 to gl, and 0 to g2 and 0. 2 to gl. Returns for these

two assignments are found as indicated earlier, anid they are stored in
words with the same address (name). For example, the sum of the 92

and g, returns for a resource allocation of 0. 2 to g, and 0 to g, is stored
in a word with an address equal to Bl + B2 + B3 + 3, or uI + 0 + 2 + 3.

The returns for other permissible combinations of resource allocation -
such as 0. 1 to g2 and 0. 1 to gl; and 0 to g. and 0. 2 to gS - are stored in
memory with the tame name. The name is derived from the contents of
index register 1 and the quantity of resource that is to be allocated.

Since a large negative value was stored with this name upon entry to the
maximization routine, the first larger entry stored with this name will

be located above the large negative value. The next instruction after the
store (STA 123 3) is a single erase high (SEH 123 3) followed by a fetch

type instruction. The result of this execution is to erase the word where
the name equal to the contents of the sum of Bl, BZ, B3, and 3 and where

magnitude is smallest. In this case, after one storage instruction two
words are in memory have the same name:

Name Data

u + 5 some + value

u + 5 large- value

.81.



APPENDIX III

After the SEH instruction, the word with the large negative value is

erased. With this sequence of instructions, successive values of a

function could be stored in the memory; and after a machine cycle, one

word of the data vector could be erased, always leaving the largest

value in the vector at the top of the vector. Index register 3, in com-

bination with index register 2, determines the combinations of allowable

resource allocations. Initially, index 3 has the .maximum current re-

source, and index 2 has the minimum compatible resource to be allo-

cated. In the process of finding the maximum return for a given re-

source assignment, index 3 is decremented and index 2 is incremented;

for each combination, the approp.iate activity returns are found, edded

together, and stored in the data vector where the smallest element of

the vector is erased and the largest element of the vettor retained.

Each input to the maximization function results in the formation of a

segment of one of the maximized return vectors. The transfer of index

data u 1 , 0, and j to a processing unit results in J + I pieces of data being

stored in vector u 1 , all with names uI + j. When the calculation of the

j + I pieces of data is completed, only the largest is retained, a.ud it is

located in jth position of the u vector.

In this example problem, there are 105 possible combinations of inputs

to this single routine, This means that a possible l05 processing units

are operating on one prograrn. Five vectors are to be generated - u,

u2, u3 ' u 4 , u 5 - and j can range between 0 and 20 in steps of 1.

There is even more parallelisrtm in 'bis section of the problem. Ea;7h

possible resource combination could have been assigned to an arithmetic

unit. In this sample problem., there are 21 possible resource alloca-

tions to the S veotors for a total of 1155 possible combinations of re-

source to be ma,:-ed, Each combination could have been assigned

to a proc:essor uiit. This approach, hU,ýYever, would entail more calcu-

lation to specify the input values of the indices, In the present method,

only th.e maximum val.t. i. of the resource is transferred, and a loop

is exccutedi + I

))



APPENDIX III

The remainder of this program sets up the indices to start processing

units calculating the u 4 and u5 vectors. Whenever work is being done

on vectors u 2 or u 3 and the largest value has been found for some re-

sourre, j, then j and the u4 or u 5 indices are transferred to a new

processing unit to start work on the u 4 or the u 5 vector.

h. Lookup Function

The flow chart for the lookup function is shown in Figure 111-8; and the

program, in Table 111-13.

The input to the lookup function is the quantity of resource x to be allo-

cated to the 6 activity functions. The resource is used in combination

-vith the name of a maximized data vector to search the vector for the

recomn-mended resource assignment. When the recommended assign-

ment is found, the remainder is assigned to the next maximized vector;

and so on.

The search word is made up of the NHA instruction and the contents of

B1, which in turn is equal to the name of the data vector and the quantity

of resource to be allocated. This search word is used to find the ele-

ment of the vector that has the recommended assognment for that quanti-

ty of resource. The recommended assignment& are stored in the 0 list

of Table Il-13.

3. RESULTS

a. Acity FUnctions I and Z

The timing charts for the g1 (x) and the $2 (x) activity functions are

shown in Figures L11-9 and IW-10. respectively. Since these functions

were relatively simplv expressions, it was felt that little would be

gained in taime by attempting to comput* their various values in parallel.

Hence, one processing unit was assigned to each function, and an itera-

tive program was written that evaluates the function over the range of

the argument. Each function turns aut a now value of the funcdio about

every 180 usec. For each new functiona& value calculated, the g8(x)

Al

-- " - qr -Ill . . . . . .. . .. .. . . ... " F

-'A
n404 amu.0m1n s m u mu u



4AIPENDIX Mi

I I+ Iu+ Y2) z~LIST 2]

4 + y 6 4.1' R . Y 5 YZ OLIT + 3

r _ _ _ _

ys V[4 u1 "y-4 ) -. OLIST +

j.3LIT I$Y 4 .yl4GLlv4

Figure IU-9 - L~ltc,ok. Function~ flow Chart. Machin.!I

-4-~



APPENDIX IM_

TABLE 111-il -,OOKUP F-NCTION PROGRAM, MAIME I

Item Instruction

JMP LOOKUP

LOOKUP LDBI IN ADD

INBI R

NIA I

ENB4 LA

STB4 R+1

LDA R

SUB R+1

STA R+3

INBZ 1

LDBI 2 IN ADD

INBI R+1

ENB4 LA

STB4 R + 2

LDA R+1

SUB R - 2

STA R + 4

E 1-1B312

ENB5 1

LUI INBZ 1

LDBI 2 IN ADD

INBI 5 R + 2

NHA 1

ENB4 LA

ST34 3 9 list

LDA 5 R + 2

SUB 3 0 list

STA 3 S list+ I

,• m,. •i-, m -. •,i. m •i"°",,m • m • , • =... m .. ... ,r $5 - = . . 11 •



APPENDIX III

TABLE UI-13 - LOOKUP FUNCTION PROGRAM, MACHINE I

C ontinued)

Item Instruction

INB3 2

ISK5 3

JMP LUI

HLT

IN ADD NOP

u5

U4

U3

U2

U1

R x

Y5

Y4

x - Yr

7y Y4

8 LIST 96 y3

95  Y4  " y3
94 Ya

43 -1 - Y5 -Y

IZ y 1i .2 Y S ' 6 Y

.86.



APPENDIX HII__ _ _ _ _ _ _ _ _ __ _ _ _ _ _

I -F-
I I

I I

N

S0 0 o " - ,, -- - § ..

.87 - - -

0 N V *. @ * * *



APPENbIX m

!

IT--
I

a * * , *•

0 0 0 0 a - -- - -
OSNOItIW' U|.f,0, t ir O AJ•.I J •,,~,VnlO

Figure Ml- O - Activity Function 2 Timing Chart, Machine I

.88ww -

I e8



APPENDIX III

fuzction generates the start irstructions and indices for the u1 maximiza-

tion program. In this m1ann, er maximization contihues in parallel but slight- -

ly behind the activity funct-Ar.n calculation. The 'i maximization programvA

uses as its inputs the i-umtional values of the gl(x) and g2 (x) programs,

which use I prqcesror each and calkulate in !,About 3780 Psec.

The timing chart for the g3 (x) activity functirn is shown in Figure; III-11.

This function displays more parallelism than the gl(x) and g 2 (x function.

For each input to the program, three processors are activated.. One

processor calculates indices to maintain the treeing operatirsn, one exe-

cutes tihe iterative loop, and another tests the exponent of .h6 floating

joint input n.umber. The number of processors in use varies from I to

35, and total time is about 195J psec.

The treeing operation is maintained by calculating frurm the input indices

two more sets of indices, which in turn result in th,-- calculation of tour

sets of indices. Each level of index calculation r,.-sults in a number of

index sets equal to a power of two. The quantiy 1oi data being generated

increases exponentially, while the time to gewn.rate the data increases

linearly.

rhe approximate minimum and maximum output-data times at the second

through eighth levels of indexing are shown in Table HII-14; note that the

minimum increase is 180 psec, and the maximum increase 300 psec.

from one level to the next. It iv possible to predict the calc'ulation of a

large number of square roots; for example, 256 in a time equal to 3090

psec.

c. Activity Function 4

The timing chart for the g4 (x) activity function is shown in Figure 11-.12.

This function computes the sines and cosines of 42 angles in about 4300

pasec, using a maximum Of Z6 processors. Except for initial calculations,

four processors operate on each value of the input argument. Two

-89-

-~ic4



APPENDIX III

TABLE 111-14 - ACTIVITY FUNCTION 3 MINIMUM AND

MAXIMUM OUTPUT-DATA TIMES, MACHINE I

Output-data time (pasec)

Level Minimum Maximum Data elements

2 1170 1290 2

3 1350 1590 4
4 1530 1890 8
5 1710 2190 16

6 1890 2490 32

7 2070 2790 64

8 2250 3090 128

processors calculate the sine and cosine of the incremental angle; two

more calculate the sine and cosine of the base angle, plus the incre-

mental angle, while index treeing calculations are being performed by

the previous processors.

In this routine, the rnin~murn and maximum times between index levels

increase at a linear rate; while the quantity of data being generated

increases exponentially for a linear increase in time.

The approximate minimum and maximum output-data times at the second

through fifth levels of indexing are shown in Table I11-15; note that the

minimurn increase is 510 sec, and the maximum increade 6 90 jOsec,

from one level to the next. It ik nososible to generate 256 sets of sines

and cocines in about 6 6 5 0 ieoc.

d. Activity Functions 5 and 6

The timing ctarts for the gs(x) and the g6 (x) activity functions are shown

in Figures 111-13 and 111-14, respectively. These functions are similar

to the gI(x) and g2 (x) function in that one processor was assignpd to each

function because of the low inherent par&ilelisrn.

.90.



API-

J J

,o i 0

o 0

A



APPENDIX III

N

- -- a8.

- - I - I_

J__K

-I

J8

0

""______ ______-

- ,-
zIi
1
I

a o-0o

F.Sure 111-11 - Activity Function 3 Timing Chart, Machine I

0 B1 -O
41



APPENDIX Ifl

S•4<.,_ 
-. •-

0 U.

'Ie~oý

1 •r , Up,

Figure 1.1-12.

Owl



APPENDIX IJI

F rii - ,I

K 1 __ _ _ __ _ ___.. ....__

_______ Jl°I ° -

_______ ......- - V

I -1 1 U/ - -- ___

*1
____I _______ ____ ___

_ _ F _ _ I ---

________ Ii
o 0 0 .0 0 _ - !-

Figure 111-12 Activity Function 4 Timing Chart, Machine I

-93.

_ _ _ _ _ _



APPENDIX III

TABLE IJI-15 - ACTIVITY FUNCTION 4 MINIMUM AND

MAXIMUM OUTPUT-DATA TIMES, MACHINE I

Output-data time (gsec)

Level Minimum Maximum Data elements

2 2340 2500 2

3 2850 3200 4

4 3360 3890 8

5 3870 . . ,I

About 450 isec are required to generate a new element of the output data

vector. The total output vector for g5 (x) is available at 4560 pasxc; and

for g6 (x), at 4710 ssec. In addition, the g6 (x.) generates indices to be

transferred to the u 3 maximization program.

e. Maximization Function

The data flow diagram for the maximization function is shown in Fig-

ure 111-15. It should be noted that the inputs to the maximization func-

tion are sets of indices that allow generation of the maximized return

vectors u1 through u 5 , referred to here as maximization programs. The

timing chart for the uI maximization program is shown in Figure 111-16;

for the u2 program, in Figure 111-17; for the u3 program, in Figure 111-18;

for the u4 program, in Figure 11-19; and for the u5 program, in Fig-

ure 111-20.

The uI program of the maximization function gets its input indices from

the gl(x) activity function. Each input allowi the maximization program

to compute all possible combinations of returns from g,(x) and g 2 (x) for

the given resource to determine what resource allocation will give the

maximum return. Each time the gl(x) activity function generates a set

of indices for the maximization program, a processor is started. As

the resource to be mtaximised increases, the time required to rnaximine

-95-

"- - 1 1-T - ... . . . .. ..- , e .. ,.



APPENDIX Ill

I

- o

0 0l a a Is --

Irigure IU-1 3 Activity Function 5 Timing Chart. Machine I

'Ni 14L,

406

3. - -
_ _ I- -.-



APPENDIX I

1 1

Fiue- 14- Acivt Fuc-o -Tiin -hrt Mcine

IO

N

i i

, , 'J



APPENDIX M__

9 Wx) uX) ,)W(X)

I W 2(x)

U (x)

Figure m-is - Maximni ation Programs Data Flow Diagram, Machine I

the return for this resource increases; for the ul program, this time

ato,,-_zts to 7500 pAsec (see Figure Ili-ib).

The u2 a,., .. progranis a,-qtiire Iheir inputs from the g3 (x) and g, (x)

activity functions, respt.ctivaly. The u4 and u 5 proglams are st.;rted

from the u 3 and u z programs, respective!y.

The maximization progrdnrs are started as soon as data are generated

that a program can operate on. ('he dashed lines on the u5 timing chart

(Figure W1-20) represent idle (wkeel spinning) time whare the arithmetic

unit is looking for a piece of data yet to be generated. Until, the data are
generated by tfe u 4 program, the u• processor x not constructivel" use-

ful.

As an explanation of the u. whetl spinning time, Jt ,u u 2 progrAm gen-

erates indice:i to start the u5 prograrn. and there is a disparity berweetn
(I) the time the u1 prc•ram gene'rates d.ta ior the start of u5 a~ d (2) the

time that u 4 has correspoting data ready for u5 . A selution to ihe

. m98o-



APPENDIX M _

T I

0

-8

I t

_ _ _ I -- o

4 0 "d-0

Figure LU-16 Maximization Program 1 Timing Chart, Machbine I

-99- ,••

.........



APPENDIX M

III

•..

_IME I _ _ __

l~1k

t Fure -1?7- Ma~ximization -rogram 2 Timing Chart. Machine I

____ --- O --

i-

• ,..,,.- L r , ,I i Z._ -. u!._:. ..•:••



L
APPENDIX Im

I- -

"-I

I . N

Q 00 0 0.

O3P4OMiV 3ztW•fOsw O A4,'INW*O

Figuro LT- 18 - Maximization Program 3 Timing Chart. Machine 1

-101-

-wow



APPENDIX III

problem would be to let u4 generate the index sets for u 5 . Less proc-

essor time would be wasted, although there would be a small amount

of time at the beginning of u4 and u 5 where data was a,.ailable but no

processor operating on it.

4. COMPARISONS AND CONCLUSIONS

The processors used for Machine I are charted in Figure 111-21. Ta-

ble 111-16 comrnares the IBM 7090 sequential (Appendix II) and the

Machine I parallel execution times for the dynamic programming prob-

lem.

Although the Machine I execution times for functions gl(x), g2 (x), g5 (x),

and g6 (x) are longer than for the 7090, it should be realized that these

"routines were not tree'd.

TABLE 111-16 - COMPARISON OF IBM 7090 AND MACHINE I

EXECUTION TIMES, DYNAMIC PROGRAMMING PROBLEM

7090 sequeii.,al time (jusec) Machine I paral-

Function Minimum Maximum lel time (psec)

g1 (x) 276 276 3,780

g2 (x) 3 8 872 3. 780

g 3(x) 3, 7,5b , 823 1.980

g,(x) 2,984 3, 993 4. 320

g;(x) 682 1, 185 4, 560

g0) 335 462 4,710

Maximization 140, 387 08. 037 16, 4b0

Lookup 383 383 510

Total 1). 1i (sec) ). 24 (sec) 0. 01'(sec)

Storage required J70 . .. _7__4

S102.

-- .~ 'WNW



0.0 y__

0.2

0.4

0.6

0.8

1.0 - -- -

1.2

a 1.4
Z

4 4
tj

WS

"0 141 1,440 1.0 i • 0 0  4.31o $°040 5.74 4 0

TIME AMICOSECONDS)

Aw



APPENDIX III

II

II

-...-.. . ...-...-. - Spl

5,4 7 ,Wo 9,SO *,36 0 10. 0wS H 5*2. "0I~M

Fagure 111-19 - Maximization Program 4 Timing Chart. Machine 1

F
&Aw8



0.0-

0.2t --

0.4

0.6

0.8

1.2

0.8 n -n - -m - -

I, .( ,_....___

-- - - - - -. - - -- -
9

.1-.6
Z

00 20

1 0

TIM&a (M•IOIC(1409O$O

""WL---



APPENDIX III

a a

SI_ _ -ip_ _ _ __ _ _ _n

-- 05

.4...... - ----------------....

-t a -



7CT___ ____I___

20

~r to __ _

0

C, 720 1440 Ztbo 2 tioo 3.600 4.320 5.040 5760 6W UO '7,200 7 9W0 6.0

TIME (MICROSECONKDS)

AM



APPENDIX IIM

--... __ - ___- -I___
- ____ • ____ _________.....___ - _____

6.480 "200 7.920 * 640 9.1%0 !0.090 10.9w I I,5WO 12,240 12.9%" 13.580. 14.400 15 W.0 15.740 16.460

Figure Il21 . Processor-Usagle Chart, Machine 1

-107.

_ _ _ B _



APPENDIX III

The squa~e root and sine routines were more complex and exhibited

P: "allelism that was extracted. In addition, these two functions were

tree'd, The sine routine generated about four times the data that tht

same routine generated on the sequential machine.

The maximization function takes significantly less tinie with Machine I

than the 7090. The reason is that the Machine I memory is used as the

maximizing mechanism. The various combinations of returns are cal-

culated and then sorted by the memory with the largest floating to the

top and being retained.

It is relatively easy with Machine I to use a large number of processor:

on even a small problem. There is a significant amount of paralleeism

in many problems capable of computer solutii n. Any iterative sequtn-e

where successive loops are independent can be assigned to a group of

processors for parallel execution. Independent programs can be exe-

cuted in parallel and can in turn start any dependent programs as suit-

able data is generated keeping active processor time to a minimum.

Machine I has an estimated 512 processing units. All processors were

assumed to have (I) a program counter, (2) an accumulator, (3) a c.,-

tient register, (4) six index registeri;, and (5j an instruction register.

Each processor has the capability of content addressing any word in

memory and can execute intarregiste. transfers. Data can be trans-

forred between processors only via the memory. Machine I fetchcs

and executes two inatructions in 30 jsec. Tthe 1090 requires about

8. 7Z psec ior the s.m. operu.tionu. Hence, the 7090 is 3. 44 faster

than Machine I,

The total time for the solution vi the dynamic programming problem on

the 7090 ranged from 1V0 to 220 rnsec. Th• totas. time for problem so-

lution on Mschir* 1. was 16 macc. Hernce, ,he Machins; I solution time

was 9 to 14 times faster than thb 7090. F~rthcrmore this particular

problem required a maximum of only 60 of the available SkI processors

A I79.

4



APPENDIX ___

at any one time. An average of:onlyZ2 processors was used. Had the

problerrm been large enough to use the full 512 processors at the peak

period, Machine I wuld then have had a speed advantage of

512;1Z X (9 - 14) = 76 - 119 to 1

In addition, many processors would have been available at nonpek

times for other uses such as compiling.

-110-



APPENDIX IV - PROGRAMMING MANUAL FOR MACHINE I

MACHINE ORGANIZATION FOR MACHINE I

The Machine I parallel processor organization used in this study is corn-

postd of 512 logical processing units and 32, 768 words of memory. Each

processing unit ha3 the following registers: program counter, instruction

register, accumulator, quotient register, and six index registers. The

program counter is a 24-bit register that is stepped sequentially to gener-

ate the addresses of the instructions in the program.

The instruction register is 72 bits long. It is divided into two 36-bit sec-

tions, upper and lower, each holding a single 36-bit instruction. In most

cases, an instruction can be located in either the upper or lower half of

an instruction word, in a few cases, the instruction must be located in

the upper half of the word.

-The accl*mulator is a 72-bit register that is considered as one register

for most instructions; in some cases, it can be treated as two 36-bit

registers, upper and lower.

The quotient register also is a 72-bit register; it is treated either as one

register or two, depending on the instruction being executed.

Any combination of three of the six index registers included in each proc-

essing unit may be used. Their contents may be added together with the

contents of the address field of the instruction to obtain aai operand ad-

dress, an operand, or a shift count.

If the indices are 1, 2, and 3, there is no reduction in the sise of the ad-

dress field of the instruction. If the indices to be added include 4, 5. or

6, then the a•ddress fieId is redu'cei bý 6 bits and bit 28 is met to 1. The

h-bit reduction still leaves an address field of 18 bits,, The original 3-bit

-III°l-



APPENX IV

Index designator field plus two more 3-bit fields are used to contain the

3-bit codes of the specified index registers.

* 2. INSTRUCTIONS

a. Instruction Classes

The Machine I parallel processor instructions may be grouped in four

classes.

Class 1 instructions treat the contents of the address field as the op-

erand. These instructions can be dexed witL any combination of

three index registers. The operand is the result of the addition of

the contents of the specified index registers and the conteats of the

address field of the instruction.

Class 2 instructions treat the contents of the address field as an op-

erand address. These instructions can be indexed with any combina-

tion of three index registers. The final operand address is the result

'ýf the addition of the contents of the specified index registers and the

contents of the address field of the instruction. The word received
by the processor after a fetch type operation is the word next h.iigher
than the request word. When a processor is requesting a word that

may or may not be currently available in memory, an NPJ instruc-
tion following the fetch will enable a comparison of the names of the

requested and received words for an exact match. If they match.
the program continues; if they do not, then a jump is made to the

fetch instruction. A number of desirable operations in this class

require execution of two instructions. This subclass is composed

1% of single- and multiple-erase instructions that require a fetch type

instruction foUowing the erase instruction.

Class 3 instructions treat the contents of the address field as a shift

count. These instructions can be indexed with any combination of

4C three index registers. The final shift count is the result of the

S.-112-



APPENDIX IV

addition of the contents of the specified index registers and the con-

tents of the address field of the instruction.

Class 4 instructions are special instructions that allow processor

unit interregister transfers.

b. Instructions

ENA Bn y Enter A Lower

The 24-bit operand Y is entered into A lower. The

most significant bit of Y ik extended in A. Bits 25

to 72 of A are replaced with bit 24 of the operand Y.

Y = y+B n. Y is the sum ofy and the contents of

any combination of three index registers.

ENAU Bn y Enter A Upper

The 24-bit operand Y (Y = y + Bn) in entered into

A upper, bits 37 to 60. The most significant bit of

Y is extended in A upper, bits 61 to 72. The con-

tents of A lower are unchanged.

ENQ Bn y Enter Q Lower

The 24-bit operand Y (Y = y + B n) is entered into

Q lower. Bits 25 to 72 of Q are replaced with bit

24 of the operand Y.

ENBX Bn y Enter Index Register X

The 24-bit operand Y (Y = y + B n) is entered into

the specified index register, X, with X = 1, 2, 3,

4, 5, 6. This instruction permits the transfer of

data from the address field of the instruction to the

specified index register or the transfer of the con-

tents of any group of index registers with y added

or not to the specified index register.

-113-



ev.

APPENDIX IV

Example 1:

(B1) - 2

(B2) 3 Bn (B2) + (B3)

(B3) = -4

ENBI B2, B3 6

The contents of Bl are replaced by 5:

%BZ) + (B3) + y = 3 - 4 + 6 = 5

Example 2:

ENBI Bl, B2, B3 6

The contents of BI are replaced by 7:

(Bl) + (B2) + (B3) + y = 2 + 3 -4 +6 7.

o• Bny
"INA B y Increase A Lower

The 24-bit operand Y (Y = y + Bn) is added to the

least significant 24 bits of A lower. No addition

takes place beyond bit 24 of A. The contents of

any combination of three index registers can be

added to the A register, bits 1 to 24.

XNAU isny Increase A Upper 4

The 24-bit operand Y (Y = y + Bn) is added to the

least significant 24 bits of A upper, bits 37 to )0.

No addition takes place beyond bit 60 of A.

INAE Bny Increase A Lower with Extended Addition

The 24-bit operand Y (Y m y + Bn) is added to the

contents of the A register. If the contents of the A

register lower is an instruction with an address in

its adt~ress field, an INAE instruction m-ay result

in alteration of instruction operation code and

-114-



APPENDIX IV

tag field. Similar changes may occur in A upper 4
if a carry propagates into A upper.

INAUE B ny Increase A Upper with Extended Addition

The 24-bit operand Y (Y = y + Bn) is added to the

contents of A upper. The restrictions on INAE

also apply to INAUE.

INBX Bny Increase Index Register X

The 24-bit operand Y (Y - y + Bn) is added to the

contents of the specified index register, X, with

X = 1, 2, 3, 4, 5, 6.

Example 1:

(B1) - 2

(BZ) = 3

(B3) -4

INBI B2, B3 6

'rhe contents of BI are increased by 5:

Y = (BZ) + (B3) + y = 3 - 4 + 6 = 5

Example 2:

INBI BI, B2, B3 6

The contents of BI are increased by 7:

Y = (BI) + (BZ) + (B3) + 6 = 2 + 3 - 4 + 6 7.

ISKBX Biy Index X Skip

X - 1. 2, 3. 4, .5, 6

The contents of the specified index register. X,

with X = 1, 2, 3, 4, 5, 6. are compared with Y.

U the two quantities are equal, the specified index

-115.
SlI



APPENDIX IV

register is cleared and a full exit is perforn.ed. If
the quantities are unequal, the contents of the speci-

fled index register are increased by one, and a half

exit is performed. Normally, this inatruction oc-

cupies the upper half of an instruction word. A half

exit then results in execution of the instruction in

the lower half of the instruction word. A full exit

is accomplished by increnenting the program
counter by 1 and executing the upper instruction

of this new instruction word.

LDA BnM Load A

The contents of A are replaced by the 72-bit operand

contained in storage location M, with M = (m + (Bn)).

M, the operand addres, is obtained by adding the

contents of the indicated index registers to m.

LAC Bnm Load A Complement

The contents of A are replaced by the complement

of the 72 - bit operand contained in storage location

M, with M = (m + (B ni.

LDQ Bnm LoadQ

The contents of Q are replaced by the 72-bit operand

contained in storage location M, with M = (m + (B) ).

LJ)BX Bnm Load Index Register X

The contents of the specified index register X, with

X = 1, 2, 3, 4, 5, 6, are replaced by the least sig-

nificant 24 bits of M, with M = (m + (Bn)).

Example:

(B 1) 2

S(32) " 3

i -I 16.



~7 1

APPEIMDIX IV _

(B3) -.4

0006

0007 000000000000000000001013

0010

LDBI BI, BZ, B3 6

The contents of BI are 00001013.

M (m + (BI) + (BZ) + (B3)) (6 + 2 + 3 -4) = (7).

ADD Bnm Add

The 72-bit operand contained in location M is added

to the contents of the A regiiter. M = (m + (,n)),

SUB B nm Subtract

The 72-bit operand in location M is subtracted from

the contents of A. M = (m + (Bn)).

MLY Bni Multiply

The contents of storage location M are multiplied

by the contents of the A register. The 144-bit

product is contained in AQ.

DVD Bnm Divide

The contents of AQ are divided by the contents of

storage location M. The quotient is left in A and

the remainder in Q.

FAD Bnm Floating Add

The sum of two 7?-bit floating point operands is

formed. The floating point operand in M is added

to the floatirg point operand in A. The result It

normalized and rounded.

-117- •



APPENDIX IV

FSB Bnm Floating Subtract

The difference of two 72-bit floating point operands

is formed. The contents of storage address M are

subtracted from the contents of A. The result is

rounded and normalized.

FMP B Floating Multiply

The floating point contents of storage location M

are multiplied by the floating points contents of the

A register. The product is rounded and normalized

in A.

FDV Bn m Floating Divide

The floating point contents of A are divided by the

floating point contents of storage location M. The

floating point quotient is retained in A.

*STA B nm Store A

The asterisk indicates a sig-

nificantly new ins ruction.

The contents of the A register are r'e-created in a
memory word with address M. Every store in-

struction results in the creation of a new word in

memory with an address of M. It is possible that

a numbex of words in memory may have the same

address and bb ordered according to the contents

of their data fields, If this situration cannot be tol-

errted then (1) care should be exercised to assign

each word stored in a unique address or (2) all

wturds in memory with this address should be

4- orai'ed before the new word is created. The

-11•3-



APPENDIX IV

ability to store a number of words with identical

addresses is desirable since alfter the next machine

cycle the vector of words will be sorted according
to their data fields, smallest to the Largest.

*STQ B mn Store Q

The contents of the Q register are re-created in a

memory word with address M (see +STA instruc-

tion above).

*STBX Bn m Store Index I

X =, .2, 3, 4, 5, 6

The contents of the specified index register. X,

with X = 1, 2, 3, 4, 5, 6, are re-created in a
memory word with address M. The 24-bit con-

tents of the index register are stored in the least

significant 24 bits of the lower portiou of the word.

Example:

(B1) -Z

(BZ) =

(B 3) -4

The contents of index rexister I are stored in

location 7:

0007 0000o00o000000oo000oo002

If there had been other words In memory with
an *gdrul! Ot VV}•? iUi@, usi ,al .way ••. i

may have beer. arothe" eleinent of the vector ofa

words with adsres. 000i:

0007 0000000t .: rO-OOn0000000.

-119- .



APPENDIX IV

0007 000000000000000000000002

0007 000000000000000000000006

ARS Bnk A Right Shift

The contents of A are shifted right K places, with

"K = k + (Bn). The sign is extended and the lower

bits discarded.

QRS Bnk Q Right Shift

The contents of Q are shifted right K places. The

sign is extended and the lower bits discarded. K =

k + (Bn)

LRS Bnk Long Right Shift

The contents of AQ are shifted right K places. The

sign of A is extended and the lower-crder bits of A

replace the higher order bits of Q. The .>-wer order

bits of Q are discarded. K = k + (Bn)

ALS Bnk A Left Shift

The contents of A are shifted left circular K places.

The higher-order bits of A replace the lo,'er order

bits. K -k+(Bn)

OLS Bnk Q Left Shift

The contents of Q are shifted left circular K places.

The higher order bits of Q replace the lower order

bits. K = k + (Bn)

N LLS Bnk Long Left Shift

The contents of AQ are shifted left circular K places.

The higher-order bits of A replace the lower-order

bits of Q. The higher-order bits of Q replace the
n

A lower order bits of A. K k + (B

-120-



.APPENDIX IV

SCA B nk Scale A

The contents of A are shifted left circularly until

the most significant bit is to the right of the sign

bit or until k = 0. Shift count k is reduced by one

for each shift and terminates when k = (, or when

the most significant bit is to the right of the sign

bit. Upon termination, the count (scale factor) is

entered in the specified order register. K = k +

(B')

SCQ Bnk Scale Q

The contents of AQ are shifted left circularly until

the most significant bit is to the right of the sign

bit of A. Shift count k is reduced by one for each

shift. The operation terminates when k = 0 or

when the most significant bit is to the right of the

sign bit. Upon termination the count (scale factor)

is entered in the specified index register. K = k +

(Bn)

AND Bnm Logical AND

The contents of A are replaced by the logical AND

of Q and the contents of M. M = m + (B )

OR Bnm Logical OR

The contents of A are replaced by th% lc~i,>al OR of

Q and the contents of M. M = m + (Bn)

EOR B nm Exclusive OR

The contents of A are replaced by the exclusive OR

of the contents of Q and the contents of M. M =

m + (Bn)

-121-

Z'I•



J APPENt)IX IV _____________________

iMP Bnm Jump

Program control is transferred to location M.

Normally, the program counter is incremented

by one for each instruction word executed. In

the case of a jump instruction, the contents of

the program counter are replaced by M and the

instruction at this address is executed next. M =

m T (B n)

JNGA B nm Jump if A Is Negative

Program control is transferred to location M if

the sign of A is negative. If the sign of A is posi-

tive the next sequer.4ial instruction is executed.

M = m + (Bn)

JNZA B nm Jump if A Is Nonzero

P-rogram control is transferred to location M if

the contents of A are not zero. If the contents of

A are zero, the next sequential instruction is exe-

cuted. M = m + (Bn)

JNGO 5 3 n =- Jump iU Q Is Negative

Program corltrol is transferred to location M if

the contents of Q are negative. If the contents of

Q are positive, the next sequential instruction is

erecutnd.

JNZQ B nm Jump if Q Is Nonzero

Program control is transferred tj location M if

the contents of Q are not zero. If the contents of

Q are zero, the next sequential iastruction is exe-

cuted.

'-122-



APPENDIX IV

nt

COM Bnm Compare.

The contents of A are compared with the contents

of M. If (A) are equal to or greater than (M), a

half exit is performed. If (A) are less than (M),

a full exit is performed. The compare instruction

normally is an upper instruction.

BJPX Bnm I:.dex X Jump

If the contents of the specified index register X,

with X = 1, 2, 3, 4, 5, 6, are not zero, the

quantity is reduced by one and a jump is executed

to location M. If the contents of the specified in-

dex register are zero, the next sequential instruc-

tion is executed. M = m + (Ba)

*NPJ B nm Nonpresence Jump

A jump to location M is executed if the address of

the word obtained from storage is not the same as

the operand address in the instruction. M = m +

(Bn)

*LDBX UA Load Index X Upper A

LA Lower A

UQ Upper Q

LQ Lowe:, Q

The least significant 24 bits of the upper or lower

halves of A or Q are loaded into the specified index

register, X, with X = 1, 2, 3, 4, 5, 6.

*ADBX UA Store Index X Upper A

LA Lower A

UQ Upper Q

LQ Lower Q

-123- .!



APPENDIX IV

The contents of the specified index register, X,

with X -1 , 2, 3. 4, 5, 6, are stored in the least

significant 24 bits of the upper or lower half of A

or Q.

*SEH 0 Single Erase High

FETCH ( Fetch type instruction

The contents of the location which is next larger

than the lower limit word ( are fetched and then

erased from memory. a and j3 are the upper and

lower limit words that bracket a block of data in

memory. The data field of word a is maximum

positive while the data field of word 3 is zero, The

word fetched and erased is the word next larger

than the lower limit word (.

o >-• a = (m + (B), ) = (m + (B n))

*SEA Single Erase A
FETCH

*SEQ Single Erase Q
FETCH

The upper limit word a has its contents set to the

contents of A or Q. The operation is the same as

for SEH.

MEH Multiple Erase High
FETCH

The execution of this instruction is the same as. for

SEH except that all words between the limits a and

Sare erased.

*MEA Multiple Erase A
FETCH

*MEQ Multiple Erase Q
SFETCH

The execution of these instruction is the same as

.124.



APPENDIX IV

for SEA and SEQ except that all words between the

limits a and 0 are erased.

*SEHA Single Erase High A
FETCH

*SEHQ Single Erase High Q
FETCH

The execution of theive instructions is the same as

for SEH except that the lower limit word is the

same as the contents of A or Q.

*MEH A Multiple Erase High A
FETCH

*MEAQ Multiple Erase High Q
FETCH

The execution of these instructions is the same as

for MEH except that the. lower limit word is the

same as the contents of A or Q.

*SEAA Single Erase AA
FETCH

*SEQQ Single Erase QQ
FETCH

The execution of these instructions is the same as

for SEA except that the lower limit word is the

same as the contents of A or Q.

*SEQA Single Erase between limits QA
FETCH

*SZAQ Single Erase between limits d.hJ
FETCH

The execution of these instructions is the same as

for a SEH except that the upper limit word a is the

same as the contents of Q or A and the lower limit

word 0 is the same as the contents of A or 0.

*MEAA Multiple Erase between limits AA
FETCH

.l25.

-t



' APPENDIX IV

*MEQQ Multiple Erase between Limits 'Q
FETCH

The execution of these instructions is the same as

for a SEAA, SEQQ except that all words ara erased

between the limit words.

*MEQA Multiple Erase between Limits QA
FETCH

*MEAQ Multiple Erase between Limits AQ
FETCH

The execution of the instructions is the same as

for SEQA, SEAQ except that all words are erased

between the limit words.

*NHA Next Higher than A
FETCH

*NtQ Next Higher than Q
FETCH

The word next higher than the lower limit word f

with contents equal to contents of A or Q is fetched

from memory.

*BGN Bny Begin Y

Y is added to (A) upper. The contents of A are then

stored in the WAIT LIST. This instruction is used

to start arithmetic units. Prior to the BGN instruc-

tion, A has been loaded with an LDI , JMP

PROG instruction. Execution of the BGN results

in the addition of Y to the LDI instruction and the

storage of this instruction pair in the WAIT LIST.

The address that is added is the address of the

location where the indices to be transferred are

stored.

3. NUMBER REPRESENTATION

A fixed point number consists of a sign bit and coefficient. The upper bit

-IZ6-



APPENDIX IV

of a fixed point number designates the sign of the coefficient. If bit 71

is 1, the quantity is negative; a 0 sign bit signifies a positive coefficient.

The coefficient may be an integer or fraction. The binary point:, in the

case of an integer, is assumed to be immediately to the right of the low-

est order bit; for a fraction, the point is put to the right of the sign bit.

Floating point numbers are represented by a coefficient and an exponent.

The coefficient consists of a 60-bit fraction -n the lower 60 positions of

the floating point word. The coefficient is a normalized fraction equal

to or greater than 1/2 but less than 1. The highest order position, bit

71, is the sign of the coefficient. If the sign bit is 0, the coefficient is

positive; if the sign bit is 1, the fraction is negative and in ONE, 1s com-

plement form.

The floating point exponent is an I I-bit quantity with a value ranging from

00008 to 3777 It is formed by adding a true positive exponent and a bias

of 20008 or a true negative exponent a-nd a bias of 1777 This results in
a range of biased exponents as shown below.

Three positive Eiased True negative Biased

exponent exponent exponent exponent

+0 2000 -0 2000

+1 2001 -1 1776

+2 2002 -2 1775

+1776 3776 -1776 0001

+17778 3777 -1777 0000

4. BIBLIOGRAPHY

GER-12105: A Dynamic Programming Program for the IBM 7090. Akron,
Ohio, Goodyear Aerospace Corporation, February 19bF5.

GER-11777: A._namic Programming Problam. Akron, Ohio, Goodyear
Aerospace Corporation, 12 October 1964.

GER- 11949: Parallel Execution of the Dynamic Programming Technique.
Akron, Ohio, .?foo-7year Aerospace Corporation, 21 January 1965.

-127-

NWS •1M I q, • •A



APPLNDIX IV

GER-11875: A Para1el Processor Organization. Akron, Ohio, Good-
year Aerospace Corporation, 15 Deceinber 1964.

¶1

r

-las



APPENDIX V - BI-TONIC SORTING

1. INTRODUCTION

In a previous company report, a a new internal sorting method was dis-

cussed. Discussed here is another method that, while not as efficient as

the referenced method, has certain advantages in parallel processors. To

sort 2n words, the method presented here (bi-tonic sorting) requires

n(n + ),n - z comparisons (with exchanges) while that of the referenced

method requires only (n - n + 4)2n - 2 1 comparisons.

2. BI-TONIC SEQUENCES

Definition: If

A = a,, a 2 .2.P . an

and

B bI, b2 #. . . bn

are sequences of numbers, then B is a circular permutation of A if and

only if there exists an integer, k, with 0 - k I n - 1, so that
b. = a.

for all i's satisfying

1 <i<=nk

and

bi =ai+k n

aGER-11759- A New Internal Sortin, Method. Akron, Ohio, Goodyear Aero-
space Corporation. 29 September 1964.

-129 -



APPENDIX V

for all i's satisfying

n -k+ 1 i n

Definition:

aI, a .a .2 an

is said to be a bi-tonic sequence if there exists a circular pernmutation of

A, B = b1 , b2 # . . . . -. bn ,nd an integer i, with I i i n, so that_ . . b -b. .- 
b

b1 - b • bi - I i + I " bl n-I

It is easy to see that any monotonic sequence is bi-tonic, as is as the con-

catenation of any ascending sequence with any descending sequence.

Theorem 1: Any subsequence of a bi -tonic sequence is bi-tonic. Proof:

Let A be any bi-tonic sequence and A' any subsequence of A. The theorem

need only be proved for any circular permutation of A. Letting B b

b 2, .. . bn be a circular permutation of A where

b 1 - b2 -4 ,j . b. i b. i ' + b n I b n2 bi-I i +1 n-I

it can be seen that any su'sequence of B is bi-tonic. This concludes the

proof.

Definition: If

A a a l, a& . . .. . a q

where p and q are integers ar.d 1 i p. then the sequence A, is1, p
defined

As, p i+p + (q I)p

Definition: If

A .a1 , a . . . apq

then the sequence A.', p it defined as the sequent:e Ai. P rearranged into

ascending order.

.130-



APPENDIX V

Definition: If

A -a, 2' a pq

the derived sequence A(j' q) for I g j - q is defined as a sequence of p

terms whose ithterm is the jth term of A'.

Example: Let p = 4, q = 3, and A = 7, 9, 13, 20, 17, 15, 10, 8, 4, 1, 3, S.

Wh-n A is written as terms of a 3- by-4 matrix (across the first row, then

across the second row, etc.):

17 15 10 8

4 1 3 5

then the first column is the sequence A1 , 4 - 7, 17, 4, the second column

is the sequence A2 , 4 = 9, 15, 1, etc. If each column of this matrix is

rearranged into ascending order.

S4 1 3 5!

7 9 i0 8,

15 13 20/

th'mn A' = 4, 7, 17 is the first column, A' 1, 9, 15 is the second1,4 ,' 2, 4 ¶ )

columrn. etc., and A'( 3) = 4. 1. 3, 5 is the first row. A (?7, 9. 10. 8

is the second row, etc.

J1% the above example, A is bi-.onc since one circular permutat-on oi A is

20 17, 15, 10. 8, 4. 1. 3, S. 7. 9. 13. As Dredicted by t3,orem 1. the

subsequences A 1 4 a 7, 17. 4; A2, 4 ' 9. 1' . 1; A3. 4 a 13, 10, 3. and

A4. 4 20. 8, 5. also are bi-twr.ic. In the example, the derived sequences

A( I. 3) 4. I , 5. S. A(Z. 3) '?. 9, 10. 0 . and A(0. 3) a 17. IS. 13. M0.

are bi-tonic and. furthermore. A(1. 3) hae the least four memtbers of A.

-131 -



S APPENDIX V

A(",;; has the middle four, and A( 3 ' 3) has the greatest four members of

SA. Hence, to reorganize A into ascending order, it is sufficient to re-

arrange each of the three bi.-tonic-derived sequences into ascending order

and concatenate them. Theorem 2 shows this is true for any bi-tonic se-
quence.

Theorem 2Z If

A = a,, a2, ... . a

is bi-tonic, then each derived sequence A wher 1 q, isb

tonic and

max [A(1l q)] ( mi [ ,2, q)]

nax [A(Z, q)] - min [A(3, q)J

[Ax q 1, q) min [AN q],
Proof: Consider A written in matrix form:

a , a2  a 3  . !

a ap a2p

a ~p + a ~p + 2 a2p + 3 a3p

< alq ~ a( a a

(q - 1)p + 1 (q - l)p + 2 (q - l)p + 3 . . . pq

-132-



APPENDIX V

and observe that a circular permutation of A is equivalent to a circular

permutation of the columns plus a circular permutation within each column.

The effect of a circular permutation within any column is cancelled when

the column is rearranged into ascending order. Hence, a circular per-

mutation- of A causes a circular permutation within each derived sequence;

this does not affect the bi-tonic property and maximums and minimums. It

is concluded that it is sufficient to prove the theorem for any circular per-

mutation of A.

Pick a circular permutation of A, B = bl b2 . ... b for which there

is an integer j, with 1 . j = pq, so that pq

b-1- b 2 ý- . .- b. i_- b. i- b. J + b Sqb p2 j - j 3 3+ ! " pq -l1-p

Let r and s be the integers defined by

rp + s j and 1 8 p

B in matrix form is

b. b . . . b
ji 2s p

l b b .,b"
p + b p+ 2 p+ l 

b "p

brp brp + 2 brp + s .. b(r + l)p

(q -l)p + b (q- )p + 2  . . . bpq

-133-



AP"ENDiX V

,4v

At is easy to see that for any k, w.itab - k - p, max k' + k' + k'

* .'b(q_ 1)p l = ma. bk. baq i;pbk so that after each column

is rearranged into ascending order e.:ch term of row q the derived se-

quence B'" , con-,ea frorn row I or row q. The proof is divided into

three cases; 0 < r < q - I. 0. = 0 and r = q - 1.

For 0 < r < q - I, the inequalities

b5 b 2 b 3 b it

and

b(q .- lp b(q j)p . 2  pq

hold, so if 17, h. for scn-e k. where I k It P. then b_..l j q -lp (+ q) -k.

b(q _p This. together with B ) '= max o blq - i}p I

... ::.1, . , max (b. b ) implies that for some integer

t, w here 0 t D. B, ý =O b V b 2 . " b t l)p + t 4 1 ?
(q )p -t 2 . . . .b .

~ - . . . . . pq

M'or I - t p - I. iq_ q) His bi-tonic and its mir.un-:" s

m •n•J. bl, - -)p - t I "

LetC b . b I then C is bi-tonic with a m.axi-t _-' • •. . . • - lp + t

mum 01

max [bL b (q. p

and

b t bt t- I

b t b(q 
t

b (l)p t t

and

-134-

I
,ap - -



APPENDIX V

b (q _ ip + t + 1 b b(q I) l~+ t
(q. q(ql q)

are established so min LBq q max (C). If t - or t p B q

is monotonic, hence bi-tonic, C is bi-tonic, and min q) - max (C).

The r = 0 case can be reduced to the case r = q - I by inverting the order

of the terms of B; this operation inverts each derived sequence and does

not affect the bi-tonic property, maximums and minimums.

For r = q - 1,

1 b b (q - l)p + 1 (q - l)p+2 = .

b (q _ l)p + s - 1 (q l)p + s b(q - l)p + s + 1 -

pq - pq

If b bp, then, B ' b) 11,), which is monotonic, hencepq p ''
bi-tonic, with a minimum of b C = b I b bq is bi-p" p + p +z ; 2'p

tonic with a maximum of max (b + F b p). so min [Bý q. q)] 1 max (C).

Ifb > b , then there is an integer t, s t p-l, sothatb tbPq - )p, and-b o ha b b-
b andb Ir B (q. q)= i b l...Ibt

bIq _) p + t t + 1 (q - I)p + t 1 I 1' 2.....
b b , b is bi-tonic with a minimum

of

min [bt, (q_ 1)p+ t +I

C=bt + b ' bt + 2......b~q - l)p + t is bi-tonic with a maximum of

max [bt+1 bq-1)+ and again min [B q] max (C). This con-

cludes the case r = q - 1.

In all three cases, B q) is bi-toric and if C B - B q) C is bi-

tonic and mrin [B(q, q)] _ max (C). C has (q - l)p terms. It is not hard

to see that the derived sequences cGl, q - 1), C(2, q - C . - lq-1)

of C will be circular permutations of B{I' q) B{2 " q) , B(q -B , q)

respectively. Hence, the above proof could be carried out on C to show

-135-

Am



APPENDIX V

that C( 9 q - and therefore B q q is bi-tonic and miin

[c(q - 1, q -lmax[C- C(q ., q " Therefore, mrin [B(q - 1, q)] I

max[B - Bl q) - B - , q• Iteration of this process proves theorem 2.

3. BI-TONIC SORTING OPERATORS

For any intege: n > 1, let N be an operator that, when applied to any bi-
n

tonic sequence of length n, causes the terms of it to be rearranged into

ascending order. Theorems 1 and 2 show that for any integers p > 1 and

q > 1, N can be constructed from p applications of N and q applicationspq q
of N . The operator equation isP

( pqA) N (qA, p)Nq(A, N). (qA, p)Np[ (1, q)]Np N [q q)

Or, usingfnotation,
P qr

Npq(A) =7 *-Nq(Ai, p), N Np[A(j, q)]

i= j
t-l

A special case is when p = q

t- I
q q

N t(A) = Nq(A. N I N - 1t[(j' •)
q i=1 i, q j = I q

Repeated application of this equation allows construction of N t from Nq

operators. When q =, q

2t - 1

N t(A) = TN 2 A 2t (A 1 2 N [t - I 2)] 2t N [A(2, 2)]
2 ' -- t1 2 t

The N. operator is a comparison of two numbers with an exchange if they

are in the wrong order (N2 is the same as Q. in GER-11759).a The N t
operator will have t2t t 1 N2 operators.

a
Ibid.

-136-

......



APPENDIX V

A bi-tonic sequence can be formed from any two ascending sequences by

inverting one sequence and concatenating them. The bi-tonic sequence

then can be sorted by means of an N operator; the result is the merge of

the ascending sequences. Hence, the operator Nn is equivalent to Mm, k

of the referenced report for any m, k where m + k n.

In general, Nm + k uses more Q2 cperators than M m k' Ihis is the

price to obtain a merge operator that is dependent only on m + k and not

on m and k separately; for exam.?le, in the referenced report, M t S2te I

uses (t - 1)2t " 1 + I operators but N t has the advantage that it can be2'

used to merge any twb ascending sequences whose combined length is 2

where M t 1 I - 1 can only be used when both sequences have the same

length, 2t -

If a sort of 2n numbers is conducted using N operators for merging, the

sort will use (n2 + n)2n - 2 Q2 operators whereas, in the referenced re-

port, only (n2 _ n + 4 )2 n " 2 - I Q2 operators are required using M oper-

ators.

4. CONCLUSIONS
This report indicates how a merge operator N t can be constructed from

Q2 operators that will merge any two ascending sequences whose combined

length is 2t. N is more versatile than M of the referenced re-2t m, 2t - m

port because of this but it uses slightly more Q2 operators.

-137-



APPENDIX VI - BASIC ORGANIZATION OF MACHINE I

S. INTRODUCTION

This report describes a computer organization consisting of several

arithmetic units and., several I/O channels interconnected by a multiaccess

self-sorting memory. All arithmetic units and I/O channels can access

the memory at the same time with no conflict, even when two or more

".-" units access the same word. The sorting capability of the memory allows

fast sorting and searching of tables and a form of content addressing.

This capability, together with the parallel arithmetic capability, gives the

processor a fast processing speed on most classes of problems.

2. THE PROBLEM OF ACCESSING DATA IN COMPUTER ORGANIZATIONS

Initially, higher processing speeds in digital computers were obtained

mostly by using faster components. Later, higher speeds were obtained

4 mostly by doing operations simultaneously that previously were done one

at a time; for example, the first computers suspended computations during

I/O operations while later machines do both simultaneously. The latest

, •large-scale processors, such as the IBM Stretch and the CDC-6600, allow

j. several I/O and arithmetic operations to take place simultaneously.

In the future, computers with a large number of simultaneously operating

arithmetic units (ALU's) and I/O :hannels, perhaps in the hundreds, can

be expected. The major problem in such a computer is that of giving al.

units fast access to the data that they need.

This problem exists in present-day computers where memories are di-

vided into several banks so that while one channel is accessing one memory

bank other channels can be accessing other 6anks. When two or more

channels need access to the same memory bank, one of the channels is

-139-



APPENDIX VI

per-nitted -accers and the others wait. It can be expected that the fre,.

quency of these conflicts will be very high if there are hundreds of chan-

nels, and thus this method does not appear to be promising. This is

especially true if data are retrieved by content rather than by address,

since a given item might be in any memory bank and a channel must look

in all the memory banks for the item. In this case, dividing the memory

into banks does little to increase the overall processing speed.

When the class of prcblems to be solved by a particular machine is re-

stricted, the machine can be tailored to prevent memory conflicts. An

example of this is the SOLOMON comDuterI1 a where each processing

element is allowed access only to its four neighbors (right, left, up, down).

On certain problems with a rectangular structure (matrices, partial-

difference equations, etc.), the SOLOMON ccm,)uter achieves a fast

processing speed because each processing element only needs access to

its four neighbors while for other problems the time spent in shuffling

operands to the elements needing them will slow the processing speed

drastically.

The above discussion exhibits the need for a memory capable of perform-

ing hundreds of accesses simultaneously without conflicts. Ideally, no

conflicts should arise even when several channels want the same word.

This situation exists if several ALU's jump simultaneously to a common

subroutine such as a square root subroutine,

3. A MULTIACCESS SELF-SORTING MEMORY ORGANIZATION

a. Introduction

One way to build a memory with m words and n access lines is to use a

matrix or crossbar switch with rn rows and n columns. The amount of

equipment in such an arrangement is proportional to mn, a prohibitive

Superior numbers in the text refer to references listed under Subhead 6 on
page 162.

-140-

--- r- -V Immmn m mmmJ m wj~ujm •im



L
APPENDIX VI

number for memories of reasonable size. Another disadvantage of the

matrix is the fan-out and fan-in required of some of its elements; for

example, there is a gate for each word in memory loading down each

access line. The fan-out and fan-in can be reduced by "treeing" but this

increases ;ie amount of equipment even more.

Fortunately, other networks of elements exist that perform the same

f.unction an the rn-by-n crossbar; these use only m/Z log2 n elements (ap-

proximately) and the fan-in and fan-out required of each element is con-

stant regardless of m and n, These networks are based on the sorting

and merging techniques discussed in GER-117592 and GER-118693 and

described below.

b. The Comparison Element

Each element in the sorting and merging networks has two inputs, A and

B, and two outputs, L and H, as shown in Figure VI-l. When two items

of data are presented on the inputs, the element compares the two items

as if they are numbers and presents the lower of the two on output L, and

the higher on output H. If the two items are equal, the element presents

their common value on both outputs. Either bit-serial or bit-parallel or

a serial-pcrallel form of data transmission is possible; however, serial

transmission shculd be done mnost-significant bit first.

Figure VI-2 shows a 13-NOR comparison element through which data are

transmitted one bit at a time, most-significa it bit first. Basically, this

element operates as follows. The B > A and A > B flip-flops are reset

by the reset i,&put and then the data items are presented on A and B serially,

most-significant bit first, interspersed with clock pxulses on the clock input.

With the flip-flops reset, the L output is the logical product (AND) of A and

B, while H is the logical union (OR). if A = B, the clock pulse has no

effect. If A = I and B = 0, the A > B flip-flop is set. If A = 0 and

B = 1, the B > A flip-flop is set. If the B > A flip-flop is set, it re-

mains so until the next reset pulse. It changes the operati6n of the circuit

-141-



i
APPENDIX VI

A

H

IF A > 5. THEN L = B AND H z A

IF A < B. THEN L = A AND H ý B

Figure IV-1 Symbol frr a Comparison Element

so that L = A and H = B and it inhibits the setting of the other flip-flop.

The operation is similar il the A > B flip-flop is set.

Comparison elements that compare more than one bit of each item at a

time also are possible. Also, it is possible to add a shift-register stage

to each input or to each output so that the element has a temporary stor-

age function as well as a comparison function.

In the networks to be described, the L and H output of each element will

be connected to an A or B input of another element, hence the load on

the L and H outputs is fixed. This should make it possible to construct

these elements economically; for instance, the logic of Figure VI-2 could

be put on one integrated circuit chip so that the elements could be fabri-

cated in batches.

c. M Merging Networks

The comparison elements can be combined to form a network that can

merge an ordered set ot rn items with an ordered set of n items to form

.- 142-

" - ' - iii -mll mil •



APPENDIX VI

.7 _ _

'I 1____

8L_ A I

CLOCK

Figure VI.Z-2 A 13-NOR Compari~on Elemnent



-7
. APPENDIX VI

F

an ordered set ofm + n item s (Figure VI-3); that is, if m items arrive

over input lines al, a., a . m and n items arrive over b bp,.
bn. simultaneously and if a, a. •- . ; . - a m and b '•- b 2 :-.. = b n'

then the m + n items will be sent out on C1 $ c 2_ .. I C m + n reordered

so that This is called an Mm n merging net-

work.

The construction of an M rnrnerging network is based on the ,nerging

technique described in Reference 2. Basically, the network merges the

set a1,, a3 , a5, ... with the , ct bl, b3 , b 5 , . . in one subnetwork while

merging the set a 2 , a 4, a 6 . .. with the set b2 , b 4 , b 6 , . . in another

subnetwork. The outputs of the tw3 subnetworks are combined to form the

output cV, C2, c3 ..... The sl.bnetworks in turn each consist of two

subnetworks combined the same way, etc.

The construction is made more explicit in Figure VI-4, which shows how

two subnetworks are combined to form the larger merging network, Mm n

02 ------ m C
a • C

a2 • 2

a3  lwc3

b

2
3 - I

be
n-

b nC 3m +

I4PLITS a < a <a K.•. (a aa1= 2 = 3 - m-I- m

h < b < b < ... - 1, b
1 2• 3 n- - n

OUTPUTS C <C <C < ... C <C
2I " 3 - = m + n I m +n

Figure VI-3 - Symbol for an M - Merging Network
.n, n

-!44-



APPENDIX VI

pA AL CZ
i2 2 B 3

&4 Co +4 h-

m~ + n-z2

b4

-a EJ'EA.%-C

aH

a.

tA 

L 

C4

a~ 4

.ODD,4 nn-3

a~ -c

b, 2 2 AIL fl

~ W~m~B~ 

-

-



_ APPENDIX VI

There are four cases depending on the odd-even character cf the numbers

m and n. The case where m is even and n is odd is obtained fromn the

case where m is odd and n is even simply by interchanging the two input

sets; henre, only three cases are iliustrated. in al! three case3, one

subnetwork receives all the even-indexed items of the input sets while

the other subnetwork receives the odd-indexed itemns. The respective

outputs oi the two subn-.etworks are compared b,. a set of comparison ele-

rmente (one or two of the subnetwork outputs bypass this stage as indi-

cated in Figure VI-4) and the outpu t s of these elements are the outputs of

M
m, n

By applying the same procedure to the subnetworks and then to the sub-

subnetworks, etc., the construction i.s reduced to a set of M i- M p

merging networks. An M network can be built by means of the fa-P. 1

miliar binary search technique; that is, the item b- that is to be merged

with a,, a,. ...... a is comrnared first with a 1 i (or thereabouts) and
the lower of the two is nierged with aV a... a.:,, -hle the higher is

merged with a 0/ 2 .. ... ao V a Figure VI-5 shows M!0, 1

constructed this way as an example.

Another example, MI 4 is shown in Figure VI-6 with the subnetworks

and sub-subnetworks identified by the dotted boxes. A proof that the above

merging networks do in fact "rerge" is given in Referei~ce 2. (An M n

network corresponds to the M operator of "ais reference.)

Let h(m, n) be the number of corapari',on elemem.ts in M . An exact

expression for h(m, n) is hard to obtain but an -idea of how fast it grows
IS indicated by h(2P0 Zq - 2p) = (p + 2 )2 q - -2p + ! . (for q :. p - 0).

Other special cases of h(in, n) are given in Reference 2.

As can be seen from Figure VI-4. doubling the size of M adds one

level of comparison elements to the network; hence, the longest path

through the network is proportional to the logarithm of the size of the

network; for example, the longe.st path in M goes vhrough qj, o- p, 2q . p
comparison elements.

_-146-



APPENDIX VI

c 23

33 C3

C 4

C S

Ca

Figure VI-5 - MI0" 1 Merging Network

When the comparison elements include fip-flop: for storage of data,

there is a one clock-interval delay in each element and therefore it is

necessary to add extra delays in the shorter paths of the network to

equalize the delay in ali p;,hs. Delay elements or extra "waste" com-

parison elements can be used for this purpose. As an example, an

M network then would have q levels, with each level having

_? q comparison elements.

d. Bi-Tonic Merging Networks (N q)-- 2

One disadvantage of M is that it can merge only m items with nm, n

iLems and thus. for instance, cannot fuliill a need to merge m + I items

with n - I items. There is another class of rnerg,.ng networks that has

the capability of merging lists of items, regardless of the number of

items in each list, subject only to the constraint that the total number

of items to be merged is a power of two and remains constant.

-147-

M~i-



APPENDIX VI

bi

2 

5

!a

I3

•___

a7 L 
C7!

I 
L

a12- L~

SI-

b 2 n

L . .. C

"3 I13

b3 ._L_ 
-C1

".12 " 
16- i

"Figure VI-6 M 1-2 4 Merging Network

-148-



APPENDIX VI

A sequence of numbers, al, a2 . . . . a q is bi-tonic if it is monotonic

or if it convists of two, monotonic sequences, one ascending the other

desceneing, placed side by side (it does not matter whether the ascend-

ing sequence precedes the descending sequence or follows it). An N q

bi-tonic merging network such as shown in Figure VI-7 can rearrange

any bi-tonic sequence al, a2, . , a q into an ascending sequence.

For any q 2, N can be constructed as follows. If q - 1, N is simply
2q a

one comparison element; if q > 1, N2 q consists of two N2 q - I networks

and 2 q - 1 comparison elements connected as shown in Figure VI-8. A

proof that these networks function as stated is given in Reference 3.

N will have q levels and each level will have Zq " 1 comparison ele-
2 q

ments. All paths traverse q elements so there is no need to add extra

"waste" elements to equalize path lengths. To use N as a merging net-

work, one cf the input sets should enter N in ascending order and the

other in descending order so that the total input set al, a,, ... a2q is

a bi-tonic sequence.

e. Sorting Networks

The merging networks of Items 3, c and 3, d above can be used to con-

struct sorting networks by means of the well-known sorting-by-nmerging

technique; for example, a network to sort 2 q items consists of 2 q - i

comparison elements to arrange the items into 2 q - 1 ordered sequences

of length q followed by 2q - 2, 2, Z or N4 networks to merge these se-

ouences into sequences of length 4, etc.

The total number of levels in a sorting network for 2q iterns is I/Z q(q + 1).

If M-merging networks are used, the total number of elements is (q - qo+4)

2q - 2 1 1, while if N-merging networks are used the number of elements

is q(q + 1)2 q - 2

-149-



APPENDLX VI__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a C

k ~C2
a- C3 II3

N 2q

a q C 2:- I
q C2 q

INPUT a a 2a 3' da a 2qIS B-TONic

OUTPUT C C k c:3 C 2 ,C2 IS ASCENDING

a I- A Lq 2

Fi3 r BI- -j zaTi Megn2ewr

5r a-AL.
32

4

6 N

A 21

Fiur I. 8-Construction of N 2qfrom Two N2q-1 Networksad q1

Comnarison Elements

-150-



APPENDIX VI

i. Separating Networks (N .

A merging network combines two ordered sets of items into one ordered

set. It is also desirable to have a network for the inverse operation; that

is, a network that can separate an ord. red set of items into two ordered

sets teach item is marked with a flag bit to indicate the ordered set to

which it belongs).

N (for q 1 1) is defined as a bi-tonic separating networ-k. That is, if
2 q

2 q items d1 , d2 P . . . dq are presented over its inputs with dI - d 2

d 2qd and if k of these items are flagged (0 S k - 2 q), then N

presents the k flagged items on outputs el, e 2 , .... ek ordered so that

e 1 - e - . . ek, and presents the 2 q - k unflagged items on ek+ l'

e k + 2 . . ... e q ordered so thatek + e = ek+ 2 . . . < V eZq"

.N can be constructed by an iterative process that is analogous to the

process used for constructing N q. Observe from Figure VI-8 that each

element in the last level receives an item from the set a1 , a3 , a5 ...

a q on its A input and an item from the set a2 , a4, a 6 ... , a on

its B input. This suggests that each eLement in the first level of N

should decide which of its two inputs naeds an odd index in the final output,

e 1 , e,, . . . , e , and which needs an even index.- 2q

From the definition of N , the following rules (where 1 i < 2q) can be

established:

1. If i is even and if the set di, di+1 .. .. dq}

contains an even number of flagged items, then the

item d. belongs in the set E = IeV,
e, e 62q)

-151-



APPENDIX V1

Z. If i is even and if the set ,d., d i +, d dq}

contains an odd number of flagged items-, then the

item d.1 belengr; in the set 0 = eVI, e., e 5 '
ee

2q - 1

3. Hf i ia odd, then d. belongs in the complement to theI

set containing di + 1 ; that is, diCE if d. + f0 and

d.EO if d +IE

To establish these rules, any integer i is considered as I i 2(1. Let

t be the number of flagged items in d., d. , d . From the

definition of N , d.--- e if d. is flagged and d.----ee if d. is unflagged.
1q i t A I i + t

Therefore, if i is even. o. belongs to E or 0 depending on whether t is1

even or odd, respectively. This establishes rules I and 2. The case of

i odd is divided into four subc:ases, all satisfied by rule 3:

1. If d. is flagged and di + I fiagged, then di--et and

d i + 1--Net

2. If d is unflagged and d. i 1 unflagged, then d.---e.1 1+1• :•

and d. + -- ,-e.

3. If d. is flagged and d. unflagged, then d.i-et1 i+l 11

and d. 1 + ei t

4. If d is urflagged and d. + flagged, then d.--- +-e.1 i+ 1 1'- • t

and d 4. e t

An N network (Figure VI-9) can be built from twi N 1 networks pre-¶ 2 q z

ceded by a set of separating elements. An N2 network is simply one sepa-

rating element. Each of the separating elements in the first level of N2

- 1 c:22



k
APPENDIX VI

ds-- L 0, e"

H E
2 02

06

N q -

22

II

2 q
I4
I5
I6
I6

f~~ 2q5
2q 5 L-

d2q- C . I~ 2q 5'2

dq - 0 "--2q-4

d2 2q -- e 2q-

Figure VI-9 - Construction of N

-153-

__ x •



f APPENDIX VI

receives two items of data (di and d. + 1) over its L and H inputs (the first

bit received in each item is itr flag bit). It also receives an indication

(f of whether the number of flagged iterns in the set Id. + , d + 3'

d Zqis odd or even. From rules 1, 2, and 3 it decides whether d. EQ and

d + I CE or d.( £E Eand d1 + 1 E0 and presents d. and d, + , on its 0 and E out-

puts accordingly.

The f. signals are generated in a network of exclusive-or circuits that re-
1

ceive the flag bits. Long ripple times can be avoided by using a "look-
4

ahead" structure similar to the carry-look -ahead structures of MacSorley.

g,. A Multiaccess Memory Using Merging and Separating

The networks described in Items 3, c, d, e, and f above can be combined

to form a multiaccess memory (Figure VI-10). The elements in the N
2q

and N networks incorporate shift-register stages that store the bits of

data in memory. The memory words recirculate the most-significant bits

first through the N and N networks via the paths a, b, and c in Fig-
zq 2 q

ure VI-i0. Each mernory word has an address field n its most-significant

portion followed by a data field followed by a control field of p + 2 ONEs.

The words in memory are kept in ascending order; that is, the word with

the highest address field is at the top of memory, etc. Words with equal

address fields are in adjacent locations ordered by their crata fields (in

order that words be in algebraic order, a ONEs or TWOs complement

system is used with the sign-bit complemented). Empty words have zeroes

in all digits so that they fill the bottom portion of memory, The order is

kept in memory by sorting all new words each cycle and merging them with

the memory words in N
2 q

There are q levels in Nq, q levels in N q, and one level in the transfer

network so the recirculation paths h.ve a delay of 2 clock pulses.

The word length is a multiple of 2q + I and transmission is done in serial-

parallel form. Words will recirculate twice per basic memory cycle and

"-154-

q!t1

.- .• --



APPENDIX VI

CHANNEL RETURNS

RFQJESTS

FSORTO R SP:R

2 REQUESTSS

! ERASED

2 P EMPTY

WORDS 2p2P°
d 2p+ p

BOTTOMB
GATES GTE

N 2q TRANSFER V1

k 21.2

Figure Vi- - A MkUti icces klonwr, witi ,q 'p + Word, anmId ,

Rqtquiets

- 15-

0



APPENDIX VI

thus the memory cycle time is 4q + 2 clock pulses. In operation, requests

arrive over the Zp input channels (j in Figure VI-10).. These have the same

format as the memory words. There are three types of requests: WRITE,

READ, and READ AND ERASE, A WRITE request has ones in its control

field and has the address and data of the word to be written in its address

and data fields. A write request does not overwrite old data but rather

creates a new word. A READ request has the bits Olxx . . xx in its

control field where xx . . . xx is the channel number, A READ AND

ERASE request has the bits lOxx . . . xx in its control field where xx . .

Sxx is the channel number. The address and data fields of a READ or READ

AND ERASE request indicate the word to be read. If there if, a word

memcry whose address and data fields agree with that of the request, that

word is read; otherwise, the roemory word that is immediately higher than

the request is read. As examples, if the data field of a request is all

zeros and if there is one memory word whose address agrees with the re-

quest, that memory word is read; if several words have addresses agree-

ing with the request, the one with the least data field ip, read, etc. A READ

AND ERASE request will erase a memory word after reading it. Any in-

active channel will have a request word of all zeros.

A sorting network orders the requests with the aidress field taking prece-

dence over the data field, etc. The ordered requests are presented to N
.2q

over the e lines (Figure VI-10) with the highest request entering the buttom

of memory, the next lower request entering the next higher word, etc.

Concurrently., the memory words eytter N over c in ascendirg order.

The 2P empty words enter on the d lines. The input to N is a bi-tonic
2 q

sequence (Item 3, d above) and therefore q clock pulses later the merged

requests and memozy words start leaving N in atcending order.

Merging continues until the control field starts to enter the transfer net-

work. Meanwhile, the address and data fields circulate through N and

• i -156-



APPENDIX X•I
It- ~ ~ -LIIL

back into N via the k and c lines. The N network is set so that no
2 q 2q

reordering of the words occurs. Also, the comparison elements of N

2
q

are reset as the words re-enter N so that the ascending order is pre-2q

served.

At this -ojont in the memory cycle, the first two hits of each contral field

are residing in the transfer 2etwork. These bits are 00 for empty words,

Ol for READ requests, 10 foj .1EAD AND ERASE requests, and 11 for

memory words. The transfer :ýtwork remembers this information and

changes these two bits to the code;

01 for unerased memory words

10 for erased memory words and empty words

11 for READ and READ AND ERASE requests

The code change is mechanized easily. An erased memory word can be

distinguished from an unerased memory word since it is located immediate-

ly above a READ AND ERASE request. The first bit of the new code will

be a flag for N to indicate the words to be removed from memory.
2 q

During the next few clock pulses the remainders of the control fields are

fed through the transfer network with no change. As the address and data

fields are fed through the transfer network, the address and data fields of

each READ and READ AND ERASE request are overwritten with the address

and data fields of the first memory word above the request.

As the words proceed through N 2q, the flagged words aie separated from

the unflagged and exit at the bottom of N q. The 2- - 2 P + I topmost words

enter N again via the c lines and a new memory cycle starts.

The P P 1 bottommost words contain all requests, all erased words and

some empty words. They are put into N p + * via the f lires. Nzp
2P+2 +

-. I 57 -



%-4M

APPENDIX V!

uses the second control bit as a flag to separate requests from erased

words.

The requests enter a sorting network (now with the contro). field in the

most-significant place), which resorts the requests by channel nusnbers.

The sorted requests enter an N network (via i) along with the channel

nnumbers (via.). In this network, the comparison elements contain re-

verse paths along with forward paths. The comparisons are performed

on numbers in the forward paths but the switching action of each element

affects betn the forward paths and the reverse paths. By this means, the

request can be fed back on the correct channel vial.

Assuming logic elements with 10-nsec propagation delays, a 30, 000-word

memory should have a memory cycle time of 8 jisec aad an access time of

16 psec (the access time is longer than the cycle time be.cause of the time

spent in sorting and re-sorting the requests and because it includes the

time to transmit the full requested word). These times assume 1024 re-

quest channeis. Because 1024 requests can be processed every 8 psec,

an effective cycle time of 8 nsec is obtained.

4. PARALLEL COMPUTER ORGANIZATION

The multiaccess self-sorting memory of Item 3, g above can be used in

a parallel computer organizaiion. An example parallel processor might

have 300 arithmetic units, each with its own accumulator, quotient register,

index registers, instruction register, program counter, and request chan-

nel to the memory. Because these arithmetic units car. be mass produced,

it is expected that each would be considerably cheaper than an arithmetic

unit of a normal computer.

The instruction set of each arithmetic unit is similar to that of a normal

computer: LOAD A, LOAD Q, STORE A, STORE Q, ADD, SUB, MULTI-

PLY, DIVIDE, SHIFT, JUMP, etc. There are a few differences, however:

-1C



APPENDIX VI

1. Each instruction that reads an operand from memory

has two modiiying bits. One bit indicates whetiher

the operand should be erased from memory or not;

that is, whether the read request sent to memory

should be READ or READ AND EPASE. The other

bit indicates whether the address of the operand

accepted from memory should agree with the re-

quested address or not; that is, since the memory

always returns an operand for each read request,

the operand address will be different from the re-

quested address if no word in memory has the re-

quested address. If this occurs, the second bit in-

dicates whether to reinitia-e the request or whether

to use the operand received from memory. Some

cases require both modes.

2. Each store instructio~i creates a new word in memo-

ry instead of overwriting an old word. This makes

it possible to store several words in memory with

the same address (a set of words can be ordered

simply by giving each item the same address).

3. Most instructions that read an operand from memo-

ry will fetch the minimum item if there is more than

one item with the same address. This is because

the data field of the READ request to memory con-

tains zero. It is also useful to be able to fetch a

word in the middle of a list of items stored with the

same address. Thus, there should be some fetch

operations that use the contents of the accumulator

for the data field of the read request. These oper-

ations are similar to threshold searches in a nor-

mal computer, such as the CDC-1604, except that

-159-

-A 0



4]
APPENDIX VI

they require only one memory access time for execu-

tion regardless of the length of the table being searched.

4. Indirect addressing capability will be useful. Some

programs can be executed faster if one arithmetic

unit computes "addresses" while another refers to

these by indirect addressing.

S5. Indexable jumps are useful since there will be cases

where several arithmetic units may be executing the

same subroutine and the return addresses have to be

stored in the arithmetic units themselves.

6. Interrupting capability is useful so one "master"

arithmetic unit can control the others easily. It also

allows an arithmetic unit that is waiting for data to

be interrupted and started on a new prograr.

7. A "skip" on the presence or nonpresence of an ad-

dress in memory is useful for synchronizing arithme-

tic units.

The example processor might have hundreds of I/O channels, each with its

own request channel to memory. There may also be a large backup store

to main memory that uses several request channels so that large blocks of

data can be moved in and out in parallel. With a large, fast-access back-

up store, a large main memory is not needed. The I/O equipment can be

controlled by reserving certain addresses for I/O control-word storage.

This example parallel processor will be able to perform a large class of

programs very fast. The sorting and searching capability allows fast data

retrieval while the parallel arithmetic units allow programs to be executed

in parallel. For example, in the processing of a list structure, the struc-

ture can be gone through in parallel, with a different arithmetic unit proc-

essing each branch and subbranch, etc. The parallel i/O channels allow

fast data input and output, multiconsole arrangements, fast-access backup

-160-



L
APPENDIX VI

stores, etc. With error-detecting capability in the arithmetic units and

interrupt, it is possible to bypass failed arithmetic units without halting

computation, greatly reducing machine down time.

5. CONCLUSIONS

This report shows how a fast multiaccess self-sorting memory can be

constructed. It also gives an example of a parallel processor organiza-

tion (Machine I) using this memory. Besides the parallel arithmetic ca-

pability, this organization has the following features:

1. The sorting capability in memory allows fast sorting

and table searching.

2. The parallel I/O channels allow fast data input and

output.

3. The organization utilizes content-addressing.

4. It is possible to bypass failed arithmetic units with-

out halting computation. This will result in greatly

reduced downtime.

5. A full complement of arithmetic units are not re-

quired for operation of the machine. Additional arith-

metic units can be added later without changing the

programs. As the number of arithmetic units in-

crease the machine time (assuming sufficient paral-

lelism in the program) will decrease.

6. The programmer does not need to assign tasks to

each arithmetic unit. A list of tasks to be performed

is stored in mernory, each with the same address.

The arithmetic unit(s) take the top item(s) from this

list.

The organization of.the example parallel processor may be -modified if

-161-

* -u -



APPENDIX VII
programming studies indicate the need for other features. The merging

networks in this paper may have an application in any communication

switching problem. They can be made to resemble large crossbar switches

but they have fewer elements.

6. REFERENCES

"1. Slotnick, D. L. , et al: Solomon. Proceedings of the Fall Joint Com-
puter Conference, 196Z.

2. GER- 11759: A New Internal Sorting Method. Akron, Ohio, Goodyear
Aerospace Corporation, 29 September 19ýT4

"3. GER-11869: Bi-Tonic Merging. Akron, Ohio, Goodyear Aerospace
Corporation, December 1964.

4. MacSorley, 0. E.: "High-Speed Arithmetic in Binary Computers.
Proceedings of the IRE, January 1961, vol 49, no. I.

-162-



APPENDIX VII - PARALLEL MERGING-SEPARATING MEMORIES

INTRODUCTION

In a multiprocessor using a sorting memory as a multiaccess memory,

the full sorting capability of the memory is not needed since most of the

memory words remain in the same order from one cycle to the next.

Only new additions, read requests, and erasures cause changes and

these are a small fraction of all the words in memory. This leads to

the concept of using a merging-separating memory in place of a com-

plete sorting memory. The cycle time of a sorting memory of 2n words

is l/2n (n + I) steps while that for a merging-separating memory of 2n

words is 2n + 2 steps, Thus, a faster cycle time should be expected in

a merging-separating memory (some of its steps will be longer but there

still will be a time advantage).

2. FUNCTIONAL DESCRIPTION OF A MERGING-SEPARATING MEMORY

A merging-separating memory cycle has four phases: merging, flagging,

separating, and exchanging (see Figure VII-l). At the beginning of a

merging phase, the set of memory words is divided into two parts, the

higher containing the words of memory left from previous cycles arranged

in numerical order, and the lower containing new additions and read re-

quests arranged in order. In the merging phase, these two parts are

merged so the old memory words, new additions, and read requests form

one ordered list in memory. In the flagging phase, the contents of the

requested memory words are transferred to the read requests, the read

requests are flagged, and the memory words to be erased (which are as-

sociated with read and erase requests) are flagged.

In the separating phase, the flagged words are separated from the un-

flagged, the unflagged memory words left in the higher part cf memory

-163.

- ~ ~ L - -.- ~ ~ -



APPENDIX VII

are arranged in order, and the flagged read requests and erasures left in

• the lower part are a:-ranged in order. In the exchanging phase, equipment

external to the memory (not shown in t.gure VII-1) reads the read requests

and erasures and replaces the lower part of memory with a new ordered

lint of now additions and read requests for the next cycle.

SThe merging and' separating phases are most easily realized if the lower

lists are arranged in an order opposite that of the upper lists. A bi-tonic

merge performs the merging and the separating is done by an "inverse"

network (see Appendix VI).

Let the Zwords of the memory be indexed with 0, 1, 2,.. .2, 2.. 1

with 0 the inde•kof the word at the low end and Zn - 1 the index of the word

at the high 'end. In each step of the merging phase, the 2n words are

formed into 2 pairs. The two words in each pair are compared and

if the word with the lower index is higher in magnitude than the word with

higher index, the two words are exchanged; otherwise, the pair is left

alone.

The pairing rule is explained easily if the indices are considered as written

in binary form, the bits of the indices are indexed by 1, 2, 3, . . ., n (1,

the most-significant bit and n, the least-significant bit), and the steps of

merging phase are indexed 1, 2, . . ., n in sequential order. The pair-

ing rule is: "On step k, word i is paired with word j if and only if bit k of

word i is not equal to bit k of word j and -.11 other corresponding bits of i

and j are equal. "

As an example, in a 16-word merging-separating memory, the first merg-

ing step treats the following eight pairs:

(0,8) (1,9) (2, 10) (3, 11) (4, 12) (5, 13) (6, 14) (7, 15).

The second merging step treats these pairs:

(0,4) (1,5) (2,6) (3,7) (8, 12) (9, 13) (10, 14) (11, 15).

The third merging step treats these pairs:

-164-

"4 .



APPENDIX VII

(0,2) (1,3) (4,6) (5,7) (8, 10) (9,11) (12, 14) (13, 15).

The fourth merging step, these pairs:

(0, 1) (2, 3) (4,5) (6,7) (8,9) (10, I11) (12, 13) (14, 15).

In each step of the separating phase, the 2n words also are formed into

2 pairs. The pairing rule is the reverse of that for thi merging

phase; that is, the first separating stop works with the same pairs as

those considered in the last merging step, the second separating step

corresponds to the next-to-the-last merging step, etc. The two words

in each pair may or may not be exchanged. The exchange rule is ex-

plained as follows. For

0 1 2- - 1 and 0 k 5 n - I

let

S k- =j: i <.i j 2n"1

and the least-significant k bits of j equal the corresponding least-signifi-

cant k bits of i.

As an example, if n = 3, then

, 01 0 = ,I, 2'3, 45, 6, 7 , 81 =2, 4,61 So, 2 z•4•

S 10 =j1, 3, 4, 5, 6, 71 S1, 1 = 1, 5, 71 SI, =I5

S 2, = 13, 4, 5, 6, 7j1 S 2 1 , 14, 61 82,2 - 161

S = 4, 5, 6, 73 5 z 15, ~ 71fs17
3, 0 1 .1 3

S4, 0 =fS, 6, 71 84, 1 =f61 S , a

=€
55S, 0 =f6, 71I 5, 1 aI17 S 5 2 W

S6, o 171 S6, 1 X 8 6, 2" =

SS S7, 0 s, 1 771, 2 4

-165-

'Wowi
b



APPENDIX Vii

:I-t+

"~~i Z "W : tI Z ZE
0• o~w x
3: 03 tn z

Sam w a

-- I < [ wCu0 0

0 0

o o 0 r 2 23o 00

z -z

4E
0 o

x 0

LLOui w

0 WW 0 ~

0 <
Sz

0 -

0z

o 0

it z

+ 0 W Z a J

-w

I_•.. . . . --1,. ...

0 0 0
0-0

0 Z W W M

- zW~ A0

Figure VIi-I -IMerging-Separating Memory Cycle

-1~66-

`.4,144



APPENDIX VII

where ý denoteq an empty set. Let t. denote the number of flagged

words with indices in S ., k (if Si, k is empty, t.i k = 0). The exchange

rule for the pair of words with indices rn and m + 2k at separating

step k is: "Ex.change m and m + 2k - I if and only if t m, k - I is odd."

As an example, suppose words 3, A, and 7 are flagged in an eight-word

memory. Then to0 1, 0 1 t, (i t 2 , 0, and t6, 0 are odd and t3, 0' t4, 0

is, O' and t 7 , 0 are-even. In the first separating step, the words in pairs

(0, 1), (2, 3), and (6, 7) are exchanged and the words in pair (4, 5) are

unchanged. The flagged words are now in 2, 6, and 7 so tI, V t2 , 1,

t3P V t4, 1' andet, 1 are odd ardt 0 , ], t6, l. and t7 , 1 are even.

In the second separating step, the words in pairs (1, 3), (4, 6), and (5, 7)

are exchanged and the words in pair (0, 2) are unchanged. The flagged

words are now in 2, 4, and 5 so t 0 , 2 and t, 2 are odd, t2, 21 t3, 2'

t4, 2' C5, 2' andt7, 2 are even. In the third separating step,

the words in pairs (0, 4) and (1, 5) are exchanged and the words in pairs

(2, 6) and (3, 7) are unchanged. Figure VII-2 shows the interchanges

performed (underlined indices indicate the flagged words). In this ex-

ample, the three flagged words were moved to the low end of memory

with their order reversed aid the unflagged words were moved to the

high end with their order preserved.

3. PARALLEL MEMORY

In the parallel form of a merging-separating memory, there are hal as

many word stores as words. Each word store contains storage for two

words plus the logic for the comparing, flagSing, and separating func-

tions.

In the n merging + n separating steps of a In -word memory, words shift

between the word stores so that each of the desired pairs is formed. The

words can be arranged in memo"w so that the same wires can be used be-

tween each pair of consecutive steps of the merge. An example to shown

in Figures VU-3 and VI1-4. In Figure VU.l, the eight pair* in each of the

-- - 04T -~ -.. - -



APPENDIX VII

- - 5

S6 4 4

4 4

20
,-.---- 0

2 -\ - .. 3

0 2

BEFORE AFTER AFTER AFTER
SEPARATION FIRST STEP SECONO STEP LAST STEP

l'igure VII-2 - Example of Word Interchanges

four steps of a 16-word merge are arranged so that the wiring patterns

between all pairs of consecutive steps are identical; in Figure VII-4,

lc. elements are shown interconnected so that they can be used to per-

form the same function as the 32 eiements of Figure VII-3.

If the words in a 2 n-word memory are indexed by 0, 1, 2, . . 1, n - 1

and if each location ie given the same index as the word it contains in the

last merging step, then the location of any word at any step is given by
the rule: "Word i is in location j at step k if the n-bit binary representa-

tion of j is the binary representation of i shifted right end-around n - k

places. -

The wiring rule between the locations is: "Location i feeds location j if

the n-bit binary representation of j ii: the same as that for i shiftel lest

one place end-around." This shows the wiring necessary for the merg-

ing phase.

Since the steps of the separating phase are in the reverse order, the wires

-,I



I
APPENDIX VII

Figure VII-3 - Sixteen-Word Merge Arranged for Same W'iring
Pattern between Each Pair of Leves

- 169-

9~~ 126

2 1a 4



APPENDIX VII

Figure VII-4 - Eight-Element Version of 16-Word Merge

-170-

.� ,-�--low-



APPENDIX VII

X

w X
(-,
0 0 0.•
0 U

z 3
0

L z

•W W rr

S0 w

Z Z

2 O --

0 0 W

: : w

7 Z

0 0

w

z~~~~ z. -) "PE

2 o o 0- U U XI- P, 1 0 W
(U

00 0 .J - J 0

]Figure VII-5 -Example of Use of Same Wires 'or Merging and Separating

-171-



APPENDIX VII__ _ _ _ _ _ _ _ _ _ _ _ _ _

CLOCK

M

th.Figure~~~~ VIV6-DgtSoe( iisi nEeet

3 R 176-

dJ



APPENDIX VII

-- S-

It I

l- 0

)~-.

I. ____

Figure VII-7 - p-Group for the Comparison Circuit

-173-



APPENDIX VII

ILIw

0

IL4 X

ga p0 0

:3 -1 J

-j

F-J

Figure VII-8 -Word Store for 36-Bit Words (3-Level Cascade)

-174-



APPENDIX VII

x0  k

0o-- - ox

xlO

44

~F

yi 0

-o

•0 
O

('1

Figure VII-9 - Ring-Sum Element

-175-

- ox



APPENDIX VII

WORD STORFS RING-SUM ELEMENTS

"LOW
END

- UNUSED

r 2

0-0-'I T N

DETAIL

B ' ¶WORD RING-SUM

ISTORE ELEMENT

-- ---x0 0X

fo - x

ND -" UNUSED-

r • Figure VU-10 - Ring-Sum Tree for 64-Word Memory

-176-

Lij-L



APPENDIX VII

for separating are given by: "Location i feeds location j if the n-bit rep-

resentation of j is the same as that for i shifted right one place end-

around. "1 These would be the same wires as those for merging except

information travels through them in the reverse direction. lo simplify

wiring, the same wires may be used for both phases, with the correct

input and output gates being turned on to direct the information correctly

(Figure VII-5). For parallel word transfer, the single wires in Figure

VII-5 actually are busses.

Each word store consists of a number of digit stores plus interconnecting

logic. A digit store is shown in Figure VII-6. It stores one digit of each

number, ai and b., respectively, in shift register stages. The outputs

gi = a. b. and t. -= a. v b. are used in the comparison logic of the ele-1 1 1 1 1

ment. The combined input-outputs 1i, ei, oi and h. connect to the cor-

responding input-outputs of other elements. These connections are shown

in the following rules (the elements are numbered 0, 1, 2, ., 2 - 1):

I. If k is even, then e. of element k connects to I. of1 1

element I/2k and o. of element k connects to I. of

1/ 2 k + 2n 2 1

2. If k is odd, then e. of element k connects to h. of
1 1

element 1/2(k - 1) and o. of element k connects to

h. of element 1/2(k - 1) + -2

3. If k < 2n - 2 then 1. of element k connects to e. of

element 2k and h. of element k connects tc -. of ele-1 1

ment 2k + 1.

4. If k -2n ' , then I. of element k connects to o. of!1

element Zk - n and h. of element k connects to

o. of element 2k - + 1.+II1

The other variables in Fi'gure VII-6 are M, which is "on" in the merging

phase; S. which is "on" in the separating phase;X, which is "on" if the

two words should be exchanged (for example, X = I if A >' B in the merg-

ing phase); and X, which is "on" if the words should not be exchanged.

-177-



APPENDIX VIi

The comparison logic and control signals M, S, MX, MX, SX, and SX in

terconnect the digit stores of a particular element. A fast comparison

circuit can be realized with a "look-ahead" circuit. This Lechnique is

similar to the "carry look-ahead" technique a and consists of a grouping

of the logic in 2-groups or 3-groups, etc. For a comparison circuit, a

p-group (for any p ? 2) is shown in Figure VII-7. It requires p "and"

gates with a total of 2 + 3 + . . .+ p p = p /2(p 2 + 3p - 2) gate inputs.

These gr'oups are cascaded to form the comparison logic; Figure VII-8

shows an example of the cascade for 36-bit words. The G output of the

4-group is "on" if and only if A > B. When it is "on, " it causes an ex-

change of A and B on the outputs (during the merging phase) hy means of

MX; if it is "off, " MX is "on" (during merging) to cause an output with no

exchanf,e. The T outputs cf the 4-group and the right-most 3-groups on

each level can be eliminated as they are not used. This is also true of t

in the first digit store.

In the separating phase, the flag bits of A and B in each word store are

fed into a ring-sum tree. The ring-sum tree generates the control sig-

nals SX and SX for each word store It consists of 2n - 2 ring-sum ele-

ments (Figure VII-.9), each of which consists of two exclusive-or circuits,

each generating a true and complemeat output. The logical equations (for

c - 0) are:

X x 0@exl

Yo ' OxY and

When C = 1, Y = 0 and the logic i,% changed to force y 0 = 0. C is a con-

trol signal used to break the ring-sum tree into smaller piecel. An ex-

ample ring-rum tree for a 64-word rnemor./ is shown in Figure V11-10.

o a MacSorley. 0. E.: "High-Speed Arithmetic in Binary Computers." Proc.

IRE, Vol 49, No. 1, Janutry 1961.

-178-



APPENDIX VII

In some places on the figure, the complementary signals are not indicated;

in ;.11 connections between ring-sum elements, the X and X oi-tputs f.ed

x0 and 70 of another element, respectively, or they feed x, and xl K. an-

other element. Similarly, the y 0 and 70 (yl and Y) outputs feed Y and Y

of another element, respectively. During the flrst separating step, S is

turned on and Cl, C2 , C3 , C4 , and C5 are left off. In the second step,

C Is turned on (S is left on); this disconnects the ring-sum tree into two

parts. In the third step, C1 , C2 , and S are "on, " disconnecting the tree

into four parts. In the fourth step, Cl, C2 , C 3 , and S are "on" and the

tree is in eight parts. C 1 , C2 , C3 , C4 , and S are "on" in the fifth step,

disconnecting the tree into 16 parts. In the last step, C1 , Cs, C3, C 4

C5 , and S are "on" and the tree is in 32 parts. The way words are trans-

ferred between the steps and the way control signals a: - turned on causes

each word store to receive the correct exchange signals, SX and SX (see

the separating phase discussion in Item 2 above).

On the first separating step, the longest path in the ring-sum tree for 2n

words goes through 2n - 1 logic elements; on the second step, it goes

through 2n - J elements; on the third step it goes through 2n 95 _d'-ments,

etc. To decrease the cycle time to a minimum, a special clock with a

lcng interval can be used during the first separating step, a shorter in-

terval during the second separating step, etc.

In the flagging phase, the words to be separated are flagged and the con-

tents of words are trinsferred to the read requests. There may be sev-

eral read re% ests buw.hed riading the same word. It would take ain in-

ordinate amount of logic to transfer the word in parallel to all such re-

quests so in this situation only the topmost read request (the request just

below the word being read) receives the data. After the separating phase.

all such read re'-uests will still be together 3.nd the topmost request can

then send the data to all the others.

A control field in ttUa low-order bits of each word idintifies the word as a

memory word, a read request, & read and erase request, or an erase

-179.



APPENDIX VII

limit. For read requests and read and erase requests, the control field

also identifies the particular output channel iuv.ved. It is desirable to

arrange the control field codes so that for erase limits they are above

(when read as binary numbers) those for memory words which in turn
are above those for~the read requests and the read and erase requests.

A good control field code then is:

CI C 2 C3 ...... Cn

1 1 x x . . . x x Erase limit

1 0 x x . . x x Memory rd

0 1 Channel number Read and erase request

0 0 Channel number 'Read request

In the flagging phase, the following are to be flagged:

1. Erase limits

2. Read and erase requests

3. Read requests

4. Memory words just above read

and erase requests.

If C2 is picked for the flag, then the substitution for the flag bit of the ith

word during flagging is:

Ci_. czi (0-iC W V [MVCl( 1 - 0]

C is left alone so that it can be used to separate the requests from the

erasures and erase limits after all these words have been separated from

the other memory words.

The memoiy words can be tran•.fcrrcd to rcad requests by writing the

whole memory word (except its control field) into the read request, leav-

ing the read request control field alone (the read request is juist below the

-180-



APPENDIX VII

memory word). Parallel transfer gates from the A word of each word

store to the B word of the same word store and gates from the B word of

each word scre to the A word of the next lower word store are needed

for this. This involves much wiring.

The 'lagging phase takes one time step. The exchange phase consists of R

one time step during which all separated words are transferred out of

memory and replaced with new requests, memory words, or blank words.

Checks are made to inhibit writing over any memory word.

4. CONCLUSIONS

A parallel merging-separating memory has Leen described. It has the

advantage over a complete sorting memory of taking less time steps. Its

operation is faster than a serial memory because whole words are treated

at once; this time advantage is about 2 to 1. The wiring will be more

complex than in a serial memory and the cost will be higher because of

this and also because there are many more different kinds of elements

than in a serial memory.

pupi-



.!C,-...... ..5u ? . ... ~

APPENDIX VIII - PROBLEM SELECTION FOR A PARALLEL PROCESSOR

1. INTRODUCTION

This appendix presents some of the analytical results obtained in the se-

lection of problems for implementation on a parallel processor (see Ap-

pendix VI). Parallel execution of the following mathematical methods is

discussed: Jacobi's method of eigenvalue determination, relaxation solu-

tion of a system of linear algebraic equations, and numerical solution of

'I Laplace's equation.

2. 3ACOBI'S METHOD

a. Discussion

(1) General

Jacobi's method is a mathematical technique for finding the eigenvalues

and eigeuvectors of a real symmetric matrix. The method is based on

the following well-known theorem from matrix algebra.

(2) Theorem 1

Let A = (aij) be an n X n real symmetric matrix. Then there exists an

orthogonal matrix U such that

U'AU D(h, A , .,A)

=D,()

where U' denotes the transpose of U; D D(AI A, . .. , A a) denotes a

diagonal matrix; and I A1 (i z 1. 2.... n) are the eigenvalues of

A. Since in (1) U is orthogonal,

AU UD (D

and hence the columns of U are the eigenvectors of A.

-183-

a I-
s



APPENDIX V111

Jacobi's method specifies the construction of a sequence of orthogonal

matrices TI, T 2 , T . . k such that

T T'•T• T .TkT .. T = C (3)

where C it, an n X n matrix whose off -diagona! elements are arbitrarily

close to zero and whose diagonal elemeuts are arbitrarily close to the

eigenvalues of A. The columns of the matrix TITI . . k are then ar-

bitrarily close to the eigenvectors of A.

The sequence of matrices TV, T 2 , . .. , T is constructed as follows.
2# k

(3: Construction of T

From the elemerts above the main diagonal of A select the one of largest

Smagnitude, say aij. Then define

-ai..

tanZ =2 (4)

Letting

c = cos

and 1 (5)

a fin

T is defined as

c f p q a i or p a q j

*if p Z i, q a j

SC(tpq )where tpq .a ifp j.qu (6)

lif p a q A iorj

0 otherwise

More simply.

..184-

m mmmm~m ~m'~ tlm • • • n mauunm mn m lmummnnla n m mmn•-m .. m 4 -4. U



APPENDIX VIIT

cA

U in()tefioigaest

ii

1 =42 (71

-I j

T1 $
an w

C 5 I

/ " "

wher theunlnicaed trm• re zro1

where4 the uollowingedto are zeeo:

and (8)

and w t. de dfned

S• .Sn.) • , 9}

V165-



APPZNDIX VM _ _ _ _ _ _ _ _ _

[ if x C

where sgn(x) f0 if x 0,

-if x 0

then one can write:

a sin e
267 +

Sand (10)

C Cos 6 %/1 sin' 0

"I •Hence, the computation of s and c involves only algebraic relationships

and no computation of trigonometric functions is required.

(4) Construction of Tk + 1

Assuming TI .T, . . Tk have beei computed, define

Ak Ti'T'k.- I . . T, AT IT 2 ... T (01)

Then select frorn the elements above the main diagonal of A the one oi

largest magnitude, and calculate the elements of Tk + I in the fashion

specified by (4) through (10).

That matrices T. of the type (7) are orthogonal is easily seen by forming
I I

Ti T. - I. It is also evident that Tk + l Ak Tk + I is a real symmetric

matrix if Ak is, foi if it is assumed that A is real and symmetric, TII A

T is obviously real. Forther,

11 (T'r1 A TO) =' r' A'I TI = "P A T1  (12)

and hence T1 ' A TI is symm•etric. The general case follows by induction.

It is easily seen that premultiplying a matrix Ak by Tj + 1 results in a

matrix T' + Ak that is identical to Ak except in the ith and j rows,

-186-



L

APPENDIX VIII

i and j being determined by the above diagonal term of Ak having the largest

magnitude. Similarly, postmultiplying a matrix Tj + 1 Ak by Tk + 1 re-

sults in a rnatrix Tj, + 1 Ak Tk + 1 Ak + I that is identical to TI + I A'~k + 1 k Ak.th jth
except in the i and j columns. A little arithmetic will show that the i, j

and j, i elements of Ak ý , are zero. It may be, of course, that the "i, j"

and "j, ill tspots previously zeroed out in forming A k no longer will be zero

in A'k + I"

However, if t (A) is defined as the sum of the squares of the off-diagonal

terms of the matrix Al, it can be shownl, a that

t2(Ak + 1) t 2 (Ak) (13)

and hence the sequence A, Al, A 2 , . . , Ak generated by the Jacobi meth-

od coverges to D = D(X, AZI . . .,n), the d;agonal matrix of the eigen-
n

values of A, and that the colunins of T T . . Tk converge to the eigen-
vectors of A.

b. Parallel Execution

The method of Jacob, as outlined above, lends itself well to parallel com-

putation. Matrix operations are, of course, well suited for parallel com-

putation. As an example, consider the product C = AB of two matrices

A = (a..), B - (bij). Now in C, the i, j element is

n

c_ Cikbkj (14)

k= I

That is, the element in the i, j spot of C is just the dot product of the 1
th

row of A and the j column of B. Clearly, given A and B, each of the

elements of C may be calculated independently of the others. And for each

element of C the multiplications involved in the corresponding dot product

aSuperior numbers in the text refer to references under Subhead 7 or. Page 220.

-l1u7-

*..... ....... , = =



•'• APPENDIX VIII

may be done in parallel and the summing involved may be treed. The ex-

tensive matrix operations involved in the Jacobi method are then well

suited to parallel computation.

There are two computational aspects of the Jacobi method for which capa-

Silties resident in parallel processors having sorting memories are

ideally suited (sae Appendix VI). These aspects are (1) the determina-

tion for a matrix A ci the above diagonal element of largest magnitude,

and (2) the test for convergence, namely,

t A.) < 'I)

for some given 3psilon.

The test (15) for convergence may be raplacei by requiring thai the mag-

nitude of the .largest off -diagonal elbment of Ai be less than some given

epsilon.

Since each of the two computational aspects cited ,.bove involves the de-

termination o! the largest member of a given net of elements, the rapid

sort capability of Machines I or .U (Appendixes VI and XV) may be profit-

ably brought Lo bear in their execition.

3. THE RELAXATION TECHNIQUr•

a. Discussion

Relaxation is a term originally apolied by R. V. So-uthwell to a class of

terative methods for solving a system of linear equations. The term

has since come .o connote a broad class of mrthods ior the zpproximate

reforinulation of physical problems in terms of syuems of linear equa-

tions to be wolved. An examDle of this expanded use oi the te,.rý, relaxa-

tioni is offered under Item 4 below where a numerical to!utjon to Laplace's

eq,-ation is discussed. In the strict seise, the telaxation technique pro-

vides a method foe so!ing a ay,-.tm oa linear algebraic eqitations ex-

, pressed in matrix terra a

- 1,8-



APPENDIX VII

AX B, (16)

where A is an r. X n coefficient matrix of known constants, X (x 1 , x2 ,

x 3, ., xn) is a column vector of unknowns, and B - (b 1, b 2 , .

b ) is a column vector of known constants.

The relaxation technique is an iterative procedure that specifies a se-

quence X1 , Xi , . ., Xk where X. - (x , , . . . , Z n) of approxima-

tions that converge to the solution vector X. Discussions oi necessary

and sufficient conditions for convergence may be found in references I

through 4. The technique assumes an initial guess, XI, and computes

successively vectors Ri (r , r•, . . ., rn) of "residuals" defined as

R. B -AX. 17)
1 1

fori = 1 2 . . , k.

TF-e residual vector P.R provides a measure of the closeness of the approxi-1

mation X. to X. Bases on a residual vector Ri, the relaxation technique

specifies a new approximation Xi + F The process continues until the

elements of the residual vector are sufficiently close to zero to satisfy

a pre-established convergence criterion such as R. R R < ( o"1 1

max r < (

Given a residual vector R I r.,,, r th. rtlexatian preordunre

specifie! a new apprcxm a.Sin X. ot the form

X. X +A U . (18)I+ I P p

where U is the p coordinate vettor, namelvp

U OqSp Ip9  * .8 n. (19)

t% i + 1
and X is a constant to be choser such that the p elemernt. " . iod thep
residual vector R. B - A X is zero. P rray b. specified in a

i~i

-8q-



APPENDIX VIII

cyclic order, for example in terms any permutation of the integers 1, 2,

S. ., )n (n being the order of the matrix A), or according to some prede-

termined criterion. The process of choosing Xi = X. + Xp U in termsi•l P 5
of a cyclic determination of p is known as the Gauss-Seidel iteration.

More rapid convergence of the relaxation technique is obtained if Ap is

chosen so that

[I~pJ n~axIX~l1(20)
rather than specifyinig p in a cyclic fashion.

It is possible to determine A , where p = 1, 2, . ., n, as follows: For
Pi

a given p and present approximation X = (xif, x2, ... xn), the require-
• +I i + 1ment that r = C means that if the residual vector R.i + 1 (r ,

i+l i+l
r 2  , rn ) then the dot product R.i U = 0.

Now R. + B - AX.+ and X. : X. + A U.1+1 I+ •+I p p

Hence (B -AX. ) U = 0and
•+ p

nT

b a ~P apkxk

Ap a 
(l

Letting

A• AV~)k2. . An) , 22)

then

n nri (23

At each stage cf the relaxation iteration, a new approximation to the solu-

tion vector X is specified in terms of the last approximation and the ele-

ment of (23) having maximum magnitude,

-190-



APPENDIX VIII

The rate of convergence of the relaxation process may be increased by

modifying the value of A used in the iteration. If is replaced by
p P

W (24)
p Ip

it is known that for

0 < W 2 (25)

convergence of a relaxation iteration is preserved. The factor w is called

an acceleration parameter or relaxation factor. The term under [over] re-

laxation is applied - the case where 0 < w < w < 2j (It must be

stressed he c that the acceleration parameter w is used to accelerate, not

establish, convergence of a relaxation iteration. ) The central problem

associated with the use if an acceleration parameter w is to determine

the optimal value, wopt, for w; that is, the value of w for which the con-

vergence rate of the relaxation iteration is magimized. The theoretical

detz.rmination of w for the relaxation solution af a system of equationsopt

expressea in matrix form as

AX = B (26)

proceeds as follows. Let the matrix A be represented as

A = (EDF) (27)

where E, D, and F are lower triangular, diagonal, and upper triangular

matrices. Defining a matrix H as

H r -(D + E)' IF (29)

and denoting by S(H) the spectrum of H, then compute

0s= max [S(H)]. (30)

That is, p is the eigenvalue of H having the largest magnitude. If the re-

laxation iteration is convergent for the system (26), then Iiji < I (ref 2)

and wopt may be computed as

-191-



APPENDIX VIII

2
Wop + (31)

Observe that implementation of the derivation of wopt presented above in-
volves the solution of an eigenvaiue problem that may be at least as diffi-

cult as the original problem. Forsythe3 makes the discouraging observa-
tion that no generally acceptable technique for accurately approximating

6w as the relaxation iteration proceeds is known. Householder recently
opt

confirmed this observation.

b. Parallel Execution

The relaxation method outlined above involves the repeated excecution of

the operations of matrix multiplication and addition, mnultiplication of a

vector by a scalar, and searching a set for the elemert of largest magni-

tude. As was pointed out under Item 2, b above, these opc -ations are well

suited to parallel executioi,, and the operdtion of finding in a set the ele-

ment of largest magnitude may be rapidly accomplished on a parallel

processor having sorting capability.

4. NUMERICAL SOLUTION TO LAPLACE'S EQUATION

a. Discussion

The numerical solution of Laplace's equation over a rectangular region R

with boundary [R is discussed here. Assume that R is partitioned by an

equally spaced rectangular mesh and that Dirichlet boundary conditions

are specified. Given a funrtion u(x. y) for which Laplace's equation ob-

tains over R, write

a2u 82 u
-u + (32)
ax y

Letting the interval for the mesh over R be deroted bi,- A, the partial

aeiivatives for u(x, y) may be approximated by

-'1 92 -



APPENDIX VII!

Lu _u(x + A, X) - u(x: Y)
ax A

au_ u(x, y + A) - u(x, y)
ay
-n (33)

abu u(x + , y') - ZuU(X- A, y)
-7 A2

ax

azu u(x, y + A) Zu(x, y) + u(x, y-A)

ay
and then the difference equation counterpart of (32) may be written as

u(x, y) iu(x+A, y) +u(x- A, y) +u(x, y +A) +u(x, y -A)!, (34)
-.1

Equation (34) approximates u(x, y) at each interior mesh point of R by the

average of "north, south, east, west neighbors. " Other difference equa-

tion approximations to u(x, y) at interior points oi R are

u(x, y) I •{(x + A, y + A) + u(x + A, y - A) + u(x - A, y + A) +

u(x - A, y - A) (35)

and

u(x, y) u(x+ A, y) + u(x - , y) + u(x, y + A) + u(x, y -A +
.4

S-.1(x + A, y + A) + u(x + A, y - A) + u(x - A, y + A) + u'x - A, y - A)].

(36)

Approximations (34) and (35) are often referred to as "five-point" iormu-

las and (36) as a "nine-point" formula. It is easily seen that approxima-

tions (34', '35', and (rj represent u(x, y) in ternis of +, X, and D pat-

terns of neighbors, respectively, and they are referred to here as approxi-

mations A, B, and C.

-193-



APPENDIX VIII

An easily estabiished relation between approximations A, B, and C[(34),

(35), and (36)]is given by

C 3 A+ B. (37)

!terative solutions to Laplace's e4uation based on approximations A, B,
3

or C converge and often are called "relaxation solutions. " A sequen-

tial iterative solution would proceed by ordering the interior mesh points

of a region R and cyclicly applying one -of the approximations A, B, or C

over the ordering until some specified convergence criterion is met. In

a sequential pass over the ordered interior mesh points of R, two possi-

bilities for updating the values for u(x, y) at each interior mesh point are

available: (1) as each new approximation to u(x, y) is generated at a point,

it is made available for subsevuent calculations in the pass, and (2) each

pointwise approximation to u(x, y) made in a given pass uses only point

values available at the end of the preceding pass. The former[latterl

method of updating often is called the method of successive [simultane-

O.)us] displacements.

if the interior mesh points are ordered, say as p1 , P 2 , " " * Pk, and at

each point p: the value of u(x, y) is regarded as a variable x. to be deter-
L I

mined, then each of the methods A, B, or C of approximating u(x, y) over

R may be written in matrix form as

P X= Q (38)

where X = (xI, xz, . k, X) is a vector of unknown corresponding to

the values of u(x, y) at the interior mesh points r R, P is a coefficient

matrix of known constants determined by the type of approximation (A,

B, or C) being used, and Q is a vector of known consarants determined by

the approximation being used and known boundary w- , :s for u(x, y). The

system (38) may be solved by relaxation methods d. cussed under Item 3

above.

Jf for a giver, method of approximation to u(x, y) over the interior of R,

the corresponding matrix [as cited in (38)] is constructed and wopt (see

-194-



APPENDIX VIII

Item 3) is calculated, then wopt may be used to increase the rate of con-

vergence for tbh. method of successive displacements described above.

For approximation A, the procedure would be as follows. For the func-

tion u(x, y), a residual r(x, y) is d-fined at each interior mesh point of

R as

r(x, y) = u(x + A, y) + u(x - A, y) + u(x, y + A) + u(x, y - A) - 4u(x, y)

(39)

Then specify a new approximation, say t(x, y), as

u1(x, y) = u(x, y) + .jE r(x, y) (40)4

Note the correspondence of (40) and (18). Similar modifications of ap-

proximations B and C are readily specified. Although modification of the

method of successive displacements by the use of wopt in the fashion of

(40) increases the convergence rate, the use of Wopt in conjunction with
3

the method of simultaneous displacements is of no profit.

The numerical solution to Laplace's equation over a rectangular region

partitioned by an equally spaced rectangular mesh is specified easily in

terms of approximations A, B, or C and the methods of simultaneous or

successive displacements. An immediate question arises as to which of

the available techniques offers the most rapid convergence. To c')mpare

the relative merits of the techniques outlined above, code ITEST was

written in FORTRAN IV for the IBM 1410. ITEST will solve Laplace's

equation over a 9-by-9 square mesh of equal mesh spacings using ap-

proximations A, B, or C (or combinations) in conjunction with simul-

tai.eous or successive displacements. Table VIII-1 lists some results

obtained using ITEST. For each of the three runs listed, u(x, y) was

specified to be zero on the boundary. The true solution for u(x, y) was

then u(x, y) = 0 in all cases. In run 1, u(x, y) initially was specified

to be zero at each interior mesh point except at the "center" point, which

was specified as 1.0. In runs 2 and 3, u(x, y) was specified as 1.0 at

-195-



APPENDIX VIII

TABLE VIII-1 - RESIDUES AFTER TWELVE

ITERATIONS FOR RUNS 1, 2, AND 3

SApproximation Residues after 12 iterations

sequence Run I Run 2 Run 3

A, A, A, . . 0.606 15.482 6.458

B, B, B, . . 0.218 5.989 1.071

C, C, C, • . 0.506 12.856 4.567

A, B, A, B, 0.380 9.602 2.746

A, C, A, C, . 0.554 14. 105 5.436

B, C, B, C, 0.346 8.757 2.285

A, B, C, A, B, C,. . 0o418 10.581 3.267

each interior mesh point. For each of the three runs, each of seven dif-

ferent combinations of approximations A, B, and C was used for 12 itera-

tive passes over the mesh. The seven combinations of A, B, and C are

listed in column 1 of Table VIII-1. In runs 1 and 2, the method of simul-

taneous displacements was used while run 3 employed successive displace-

ments.

For each iterative pass over the mesh, a "residue" term was calculated.

The residue term- is just the sum of the absolute value of the errors in the

approximation to u(x, y) at the interior mesh points. Columns 2, 3, and

4 of Table VIII-1 list the residue term computed after the twelfth iterative

pass for each of the seven combinations of A, B, and C for runs 1, 2, antd

3, respectively. Figures VIII- 1 through VIII-9 contain the pointwise ap-

proximations to u(x, y) obtained after 12 iterative passes over the 9-by-9
*4 mesh on runs 1, 2, and 3 using successive approximations A, A, A,

3, B, B, ... ,and C, C, C, .....

Inspection of the table and figure@ cited above reveals that for the methods

tested, the most rapid convergence is obtained by using the method of suc-

cessive displacements and approximation B, (X). The convergence rate

-196-

`601iW- -. M - ý, - - MM_"rO"M



APPENDIX VI__

0 0 0 0 0

0 . 0.00 0.016 0.0 0 .0 .00 0

C 0.0 0.023 0.0 0.014 0 0 0.02S3 .0 0
a 0 0 0 9 • 0 0

0 0.016 0.0 0.042 0.0 0.042 0.0 0.0 6 0

* 0 0 0 0 0 0 0

0 0.0 0.034 0.0 0.050 9.0 0.034 0.0 0

0 0.016 0.0 0.04,3 0.0 0042 0.0 0.010 0

0 0.0 0.023 00 0.036 0.0 0.023 0.0 0

0 0 0 0 0 0 0 0 0

0 0.006 0.0 0016 0.0 0.,I 0.0 0.006 0

0 0 0 0 0 0 0 0

ITJERATION I a S 4 S l 7 a 9 t0 11 12

RKS0oJi 1.0 10 1 0 09344 00531 06102 0bS4 0i61 07S34 0ý7032 0651i 0460

*OUf TO THE APPROXIMATING FORMULA A I+) ANO THE INITIAL. APPROXIMATION FOR U(Si. YI. VIZl

1I 0 FOR Ii. P• - is, $I

Jl OY HIMPF1W011

?YN TIY9OAYiV9 APPWOXkMATtOS tOM u•k, R i AT TM-; INTTEPIION PG'%*TS ALT'EINAT I EErTPwEN

*6O ANM) MONCR•O VALUS TN& VALUES FOR ý11. It UMg. RI AN0 P.12 41 AFTER ITERATION 11

PC 0 1 00 00131 ANO 0 o, OOEIPKCTIVELV

Figure VUl-I - Run 1, Srimultan-ous Displacements, Approximation A 1+),
1Ž lteration= 17

-497- +



APPENDIX VIII _ _ _ _ _ _ _ _ _ _ _ _

0 0 0 0 0 0 0 0

o 0.0. 0.0 00 0.0 0.0 0.0 0.0 0

S \ ., 0 0.2 0.0 .0 .09 0. 0

0 .o (1.01 0.0 0.02 0.0 0.01 0. 0

* 000 0 0. 0

0 . 0./ .060 0n 0,0 a.0 0.0/ " 0.0 0

3 00 0.1 00 0.2 0 0 5l . 0

0 0.0 T0.02 0.0 00ý \ 0.0/ 006 0.0 0

* 0 0 0 0 0

*ID 0 0&

*~7RA i~ 2 0 4 5 6 7 a 0 11 1

RESICULE l.j I. l.0 0.7556 0 
7

65& 0 5623 0.5625 3,4104 0.4104 o.2991 0.2.991 .t7

'DJE TO THE APPROXiI1ATING F.DRMULA L3 (v( AND TWE INITIAL 4,"PR0X:MATI(ON FOR u(X, y), V17

ul, OTHERW SE

ONLY VALUCS OF uix, v! AT TIHOý,E POINITS rONNE:TEO PLY L.INES ARE AFFEC.TE0. APPROXINIAT,ONS
AT THE CC-NN1ECTE0 POINTS ALTfF'I.ATE DETWEEN ZERO NUN.:= O VAL.ULS. THE VAL.UE:; FOR

u)Z, 2), Q;2, A), 102, 6). ANDI 02, 8) AiTER ITERA~iGH IIllR 1.M 0 006 015. C. OTF A.r 00006 RkEbPECTIVELY,

Figure VIIl-2 - Run . tar'ecos Dispiacements, Apprý,xirnation B (X),

- 198-



APPENDIX VIII

o 0 0 0 0 0 0 0

0 0. 00 005 ()O7 00 50 0.0 'O 0

o 0.003 0.005 C,07 0004 0007 000 0005 0

0 O. 003 0.1 0.0) 007 ~ .00 0

0 0.00 0.010 0013 0014 0.013 0010 0 ne0S 0

* 0 0 0 44 0 0

0 0.0'07 0.013 0017 0.019 0 01" 01 003 0.007 0

0 0.006 0.014 0.019 0.020 0.019 0 014 0.005 0

* 0 0 0 0 0 0 0

0 0007 0.013 0.017 0.019 0.017 0.013 0.007 0

* 0 0 0 0 0 0 0 0

0 0.003 0.010 0.013 0.014 0.013 0,Q•0 0.005 0

0 0,003 0.005 0.007 0.006 0.007 0.005 0 OC.S 0

0 0 0 0 0 0 0 0

ITERATION 1 2 3 4 5 6 7 9 10 11 12

RESIDUE 1.0 1.0 1.0 0.9676 0.9163 0.8551 0,7901 0.7272 0.SG16 0.6M 0. & 0.5%Os 4

INITIAL APPROXIMATION FOR U(%, y):

S1 1.0 FOR Hi, j) = (S, S)

0 OTHERWISE

Figure VIII-3 - Run 1, Simultaneous Displacernents. Approximation C (0).
12 Iterations

-199-



APPENDIX VIII

o 0 0 0 0 0 0 0

0 0.00 0. 166 0.216 0.235 0.216 0. 106 0092 0
* 0

0 0.166 0109 0.400 0.433 0.400 03909 0 166 0
f) 9 0 0

0 0.218 0.400 0.520 0.360 03520 0.400 0.216 0

13 02S 0.43) 0860 0 606 08n0 0.433 0.23S a
* 0 0 I 0 0 0 0 0

z 4218 0.400 0.820 08960 08520 0.400 03161 0
* 0 0 0 0 0 0 0 0

0 0. ISI 0309g 0400 0ý43S 0400 0 sol 0.66t 0
0 0Is 0 0 0 0 0 0

0 0062 0166G 0116 0235 0.216 0 168 00oft 0

0 0 0 0 0 0 0 0

ITCRATIONt 1 2 3 4 A 6 7 1 S 10 I 1

ftgbIoul 43.0 37,350 3 3800 30.301 37 719 2SP3 33fl7 21 4M5ISM1!0106 It41 19442

!NIT14L APPROAgMATION FOR 04 V)-

MIS. Y) I 0 AT ALL IN110IOi POINTS

i igure V111-4 - Run 2. Sirnultanetus M s placenwns. Approximintion A ~)
12 Iterations

zoo-



APPENDIX VII ______

0 a 0 0 0 0 a 0 0

0 0.017 0.064 0.090 0.01 0.090 0.064 0.0S7 0
0 0 41 0

0.0A4 0.109 0.194 a.15M 0.134 01106 0.044 0

0 0.9 0.5 0.1 0.41 0AV 0 0.9 0

0 0090o 0.164 0 218 0.214.2 az' 0. 14 0.010 0
* * 0 0 0 6 0 Is

0 0.090 C. 15A 0,14 0.216 0.2%tg 0 1f, 0-000 0

* *014 010 0 0 05 C. 0S 0.1 0 004

o GO40 0 6 0..7 0 C64 aim "to 0. 100 6 .064 017

*~~ 9 0

TUR : ON S 4 S a 0 0

*R~ u :- o soto2 9s ,i u t ei v t.e ~ 6 ni o 0i

i ~ ~ ~ ~ ~ S *A 0 M90101CIT

Figiar, VIV-1 . Run 2. Simultaneous Dit placements, Approxtimaton 8 (X).
12 Iterations



APPENDIX VIi!

0 0 0 0 0 0 0 0

0 0075 0.138 0.180 0. 94 0.180 0.138 0.075 0

0 0.138 0.255 0.332 0.35q 0.332 0.255 0.138 0

0 0.180 0.332 0.
4

;,3 0,468 0.433 0.332 0.100 0

j 0.195 0.359 0.468 0.506 0.468 0.359 0.195 0

0 0.180 0 332 0.433 0.408 0.413 0.332 0. 1) 0

0 0. 138 0.255 0.332 0.359 0.332 0.255 0.138 0

0 0.075 0.138 0.180 0.194 0.180 0. "38 0.075 0

0 0 0 0 0 0 0 0

ITERATION 1 2 3 4 5 6 7 8 9 10 12

RESIDUE 40.800 35.610 31.560 2b.237 25.410 ?22953 20.785 18.852 17.18 15,554 14.139 12.856

SiNITIAL APPROXIMATION FOR i(x, y):

ufx, y) = 1.0 AT ALL INTERIOR POINT.,

Figure VIII-6 -. Run. 2, Simultaneous Displacements, Approximation C 1r),

12 Iterations

-2Oz



APPENDI>X VIII

0 0 0 0 0 0 0 0 0

0 0.052 0.092 0.114 0.118 0.102 0.074 0.037 0

0 0.092 0.161 0.199 0.204 0.178 0.127 0.064 0
* 0 0 0 0 0 0 0 0

0 0. 114 0.199 0.246 0.250 0.217 . 155 0.0,78 0
0 a 0 0 9 0 0 0 0

0 0.118 0.204 0.250 0.255 0.220 0. 157 0.079 0
o 0 0 0 S 0 0

0 0.103 0.178 0.217 3.220 0.190 0.135 0.068 0

* 0 0 0 0 0 0 0

0 0.074 0. 127 0.155 C'. 157 0.135 0.096 0.040 0
* 0 0 S 0 0 0 0 0

0 0.037 0.064 0.078 0.079 0.065 0.048 0.024 0

0 0 0 0 0 6 00

0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0

ITERATION 1 2 3 4 5 6 7 8 9 10 11 12

RESIDUE 38.057 31.138 26.082 22.115 18.879 16.117 13.8W7 11.227 10.242 8.789 7.S37 6.458

INITIAL APPROXIMATION FOR U(x, y):

u(x, y) = 1.0 AT ALL INTERIOR POINTS

Figure VIII-7 - Run 3, Successive Displacements, Approximation A (+),
12 Iterations

-203-

- I I -. - -



APPENDIX VIii

0 0 0 0 0 0 0 0 0

0 0.010 0.018 0 G.;j3 0.025 0.023 0.015 0.010 0

0 0.015 0.020 0.036 0.040 0036 0.020 0-015 0

0 0.017 0.031 0.041 (*044 0.041 0.031 0-C17 0

0 0.00 . .M9 0.8 0.041 038 0.;2S 0016 0

0 0-012 0.023 0.030 0.032 0.03C 0.023 0.012 0

0 0.006 C.015 0.019 3.021 0.0", 0.015 0-006 0

0 D.004 0.007 ' 009 0.310 3.010 0.007 0.004 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0p 0 0 0 0

ITERATION 1 2 3 4 5 6 7 a 9 10 '1 12

RESIDUE 31.081 Z2.520 ;e.ssa 12.471 9.323 6.939 5.124 3.763 2.754 2,012 1.46! 1.071

INITIAL APPROXIMATION FOR ax, y):

alX, Y) = '.0 AT ALL INTERIOR POINTS

Figure VIII-8 - Run 3, Successive Displacerments, Approximation B tX1,
1Z Iterations

-204-



APPENDIX vm

o 0 0 3 0 0 0 0

0 17.0a 0.0" 0.085 6A"s 0.077 0.056 0-02 0

0 0.067 0.117 0-145 0.10 0.130 0.C04 0.041 0
* 0 0 5 0 S S

U 0AcoI 0.m4 0.173 0-100 0-157 0.113 0.OSS 0

0 0.061 0-142 0-175 0.1-79 0.154 0-112 0.057 0

a 0.069 0.121 0.149 0.152 0. 132 0-09S 0.046 0
* S 0 0 0 S 0

0 0.049 0.08% 0.104 0.106 0.092 0.066 0.034 0
* 0 0 0 S 0 0 0

0 0o.0.. 0-042 0.C&2 0.052 0.046 0-C33 0.017 0

0 0 0 0 0 0 0 c 0
9 00 0 0 0 0 0 0

ITERATION ' 2 3 4 5 6 7 8 9 10 11 12

PESIDUE 36.514 29.078 23.756 19.64C 16.3S2 13.646 11-395 9.511 7.930 6 604 5.104 4.567

!NITiAL APPROXIMATION FOR Utz. y):

lICK. yx 3 .0 AT ALL INTERIOR POýNTS

Figure VUI-9 -Run 3, Si.,ccessive Dispiacernents, Approximation C (D I,
12 Itera:ions

-205-



APPENDIX VI

for B could have been accelerated by the use of wopt. It will be noted that

in solving Laplace's equation over a mesh by methods A, B. or C, the

sum of errors in the approximation of u(x. y) a" interior points vail re-

main a constant urntil the iterative procedure successively spreads the

error at a point(s) to the boundary; it is. only when boundary values are

brought to bear that the total pointwise error in the interior of the mesh

can be reduced. The method of simultaneous displacements could be im-

plemented easily on the parallel processor described in Appendix VI.

However, the slow rate of convergence obtained using simultaneous dis-

placements and the difficulty of obtairing applicable acceleration parame-

ters m-zke the method somewhat unattractive, even for parallel processors.

b. Mesh Fill In

Iterative numerical solutions to Laplace's eq-iation over a mesh begin with

the assumption of some initial values for uix, y) at interior points. Clearly,

the greater the accuracy of tbe initial approximations, the more rapid

should be the convergence. A method is described here for filling the

interior o: a mesh rapidly with accurate initial approximations to a(x, y)

based on known boundary values. This will be confined to the 9-by-9 grid

previously cited. Extension of the method to any (Zn 1) by (2 n + 1 mesh

ts immediate.

Let the value of u(x, y) be denoted at points of the 9-by-9 mesh as u(i, j),

with i and j being determined as in matrix notation. Since fu(5, 1), u(5, 9),

u(1, 5), u(9, 5)) are known, u(5, 5) may be approximated by A. Knowirzg

u(5, 5), {u(3, 3), u(3, 7), u( 7 , 3), u(7. 7)1 may be approximated by B,

then Ju(5, 3), u(5, 7), u(3, 5), u(3, 7)1 by A, etc. For a 9-bv-9 mesh,

five such passes are required for complete fill-in of interior points. Fig-

ure VIII-10 illustrates how the fill-in proceeds for each pass. The num-

bers above the points in the mesh of this illustration indicate the pass in

which corresponding approximations to u(x, y) were made. Th. approxi-

mations made during each pass depend only on boundary values or results

of the previous passes, or both; hence, they are amenable to parallel

-206-



APPENDIX VIII__ _ _ _ _ _ _ _ _ _ _ _ _ _

PASS 1. A (M' PASS 2. 8 (X)

* S *0 0 0 0 0 00 *00 00 0 0 0

2 20

* 0 0 * 0 0 0 0 0 0 * * 0 & 0 0 0 0

* 0 0 0 0 S 0 * 0 0 0 S 0 0 * 0

10 100* 0

*0 0 0 0 0 0* 0 0 0 0 0 0 0 0

* 0 0 0 0 S0 0 0 0 0 0

02 3 2
*0 0a 0 0 a * 0 0 0 0 0 0 0 0 S * 0 0

*~~~~~ 4 4 4

* 0 0 0 0 0 0 0 0 0 0 0 * 0 0 * 0 0

* 0 0 S a 0 0 0 0 . 0 0 0 0 0 0 0 0
4 A 4 4

* 0 0 0 0 6 0 0 0 0 0 1* * 0 0 06 0

2 3 2 2 3 2
* . 0 0 0 0 00 0 0 * 0 0 0 0 0 0 0

0 : 0 : : :0 4 4 4 4

* 0 0 0 o o 0 0 0 0 0 0 S 0 S * 0

* 6 5 S 0 0 0 00 0 0 0 0 0 0 0 S
4 S 4 4

* S S 0 S 0 0 0 0 0 S 0 0 0 0 0
25 2 2 3 2

* 0 0 0 0 0 0 0 0 0
4 4 4 4

* 0 0 0 0 S 5 0 0 0 0 0 0 0 0 * 0 0

* 5 0 0 0 0 0 03 00 00 0 S S 0 S 0

* 0 0 * 0 0
4 0 5 4 5 4

* 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0

Fiur VI-10 Paale Fill-In

4 2407 4 S



4'
APPENDIX VIII

computation. Accordingly, the above method of mesh fill-in is referred

to as parallel fill-in (PFI). PF1 can be executed readily on parallel proc-

essors where rapid, universal communication between processing ele-

ments is available.

To check the accuracy of PFI, code FILIN was written in FORTRAN IV

for the IBM 1410. Given values for u(x, y) on the boundary of a 9-by-9
rectangular mesh of equal spacing, FILIN calculates initial approxima-

tions on u(x, y) at interior points by PFI. FILIN was run for 11 different

sets of boundary conditions. Figures VIII-I1 through VIII-21 give the
boundary conditions and resultant fill-in based on PFI for the 11 runs.

Inspection of these figures reveals the excellent results achieved by PFI

for the boundary conditions specified. Although the implementation of

PFI is more suitable to parallel processors, its accuracy is such that

it is to be recommended for use on sequential machines.

c. Parallel Execution

The numerical solution to Laplace's equation over a mesh by simultaneous

displacements is structurally well suited to parallel computation. For..a

parallel processor of sufficient size, a processing unit could be assigned

to each interior mesh point. Each unit then would compute and store, in

an iterative fashion, ;approximations to u(x, y) at its assigned point. The

communication capabilities of Machines I or II (Appendixes VI and XV)

would allow the use of any combination oi the approximations A, B, or C.

In the event that the number of interior mesh points exceeded the number

of processing units, each unit could be assigned a block of interior mesh

points and the iteration could proceed "parallel by block and sequential by
point within a block. " However, although the method of simultaneous dis-

placements is structurally well suited to parallel execution, its low rate

of convergence makes it somewhat unattractive.

The method of successive displacements, while apparently unsuited from

a structural point of view, is in fact quite attractive for parallel computa-

tion. The rate of convergence for the method of auccessive displacements



APPENDIX VIII

1 6. 6. .0.010 .0 1.0

0 0 0 0 0 S 0

1 1'0 1.0 1.0 1.0 1. 1.0 1.0 1

* 0 0 0 0 0 0 0

1 1.0 1.0 1.0 1.0 1.0 1.) 1.0

* 0 0 0 0 a 0 0 0

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

* 0 0 0 0 0 00

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0 0 0 0 0 0 0 0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

0 0 0 0

-. 0 1.0 1 0 1.0 1.0 110 1.0

. 1. 0 10 .0 •0 10

1 1 1 1 1 1 1 1

* * * * 0 *

Figure VIII-1 1 - Parallel Fill-In, Run I

-2C9-



APPEN DIX VIII_________________

1 2 3 4 5 6 7 . 9

* *0 0 0 0 0 01 2.0 3.0 4.0 5.0 6.0 7.0 6.0 9

1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9

* S 0 qo S10 0

2 2.0 3.0 4.0 5.0 60 7.0 8.0 9

S0 0 40 s 6. 0 9

1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9

1 2.0 3 0 4.0 5.0 6.0 7.0 8.09

1 2.0 3.0 4.0 !50 6.0 ';.0 8.0 9

1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9

12 3 6 7 8 9
S 05 S S 0 S S

Figure VIII-12 - Parallel Fill-In, Run 2

-2 ~



APPENDIX VIII

9 9 9 9 9 9 9 9 9
• 0 S S * 0 0 6 0

8 8. 1? 8.25 8.38 8 50 8.S2 8.75 8.88 9

7 7.25 7.50 7.75 8.00 8.25 e.50 8.75 9

6 6,38 6.15 7.12 7.50 7.88 8.25 862 9

5 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9

& 0 0 0 0 0 0 0 0

4 4.62 5.25 5.88 6.50 7.12 7.75 8,39 9

3 3.75 4.50 5.25 6.00 6.75 7.50 8.25 9

S 0 30 0 • 0 S 3 7

2 2.68 3.75 462 5.50 6.38 7.25 8.12 9

2 2.88 3.7/5 4 62 5.50 6.38 7 25 8.12; 9

1 2 3 4 3 6 7 8 9

Figure VIII-i3 - Parallel Fill-'i, Run 3

11-



4 APPENDIX VIII5

9 a 7 6 5 4 3

* 7.25 6.50 5.75 5.00 4.-5 3.50 2.75 2

7 6. 0 6.00 5.50 5.00 4.50 4.00 3.50 3

6 5.75 5.50 5.25 8.00 4.75 4.50 4.25 4

5 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5
• S 0 S 0 S S 0 0

4 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6

3 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7

*00 0 0 0 0 0

2 2.75 3 5W 4.25 500 5.75 6.50 7 25 a

2 3 4 5 6 7 9

Figure VIII-14 - Parallel Fill-In, Run 4

-2lZ-

-,wm MA q-plqs



AP-PENDIX VIII _______________

a. 1. 2.1 4IM42
* 00 0 0 0 0 0 0

1 1.76 2.70 2.'A .2.7 2.44 2.70 1.74

* 0 0 0 0

1.76 2.25 2.0 So2o a.26 2.50 I.'m
*S00 0 0 0

1 1.69 2.30 2.75 2.94 2.73 2.. 69

1 1.76 a !0 2.98 3.2S 1." 3.50 1.76

a.0 3 44 379 24 370 126

Figure VULI-15 Par&UeI Fill-In~. Run S



APPENDIX VIfi

V

\/ V4 \/5 \i 3/
""- 0-

1 1.33 1.64 1.92 2.17 2.40 2.61 2.81 3

1.30 1.59 1.87 2.13 2.37 2.59 2.8C 3

1129 1.58 1 85 2 11 2,35 2.SO 2.79 3

* 9 0 0 0 00 0

1 1.29 1.57 a.85 . 12 2.35 2.57 2.79 3

* S 0 0 0 01 0

1.29 1.58 1.85 . 11 2.35 2.58 2.79 3

* 0 0 0 0 0 0

1 1.30 1.59 1.87 2A13 2.37 2.59 2,80 3

0 0 0 0 50 0 0 0

1.33 1.54 '.92 2.17 2.40 2.61 e.8 1 3

* 00 0 0 0 0 0

I V2 3 %4 \ \7 \\ 3

* 00S0 0 0 0 0

Fiur - Pr, F
Figure VIII-16 - Parallel Fill-In, Run 6



L
APPENDIX VUII

1 /2 V3 /4 'V5 V4 %/3 N'2

1 1.30 1.57 1.78 1.87 1.78 I.57 1.30 -

1 1.24 .-46 1.62 1.70 1 .2 1.46 1-24

1.21 1-40 1.54 1.60 i .54 1.40 121

1 1.20 1.39 1.52 1.62 152 .33 - 1-20

1 1.21 1.40 1.54 1.60 1.54 1.40 1.2 1

1 1.24 1.46 1.62 1.70 1-C2 i. 46 1.24

1 1.30 1.57 1.78 1.07 1.78 1.57 1.30

V '2 \/3 \/4 vs5 \ 4  VS '2
F 0 0 -0 0 0 0 0

Figure VII.I- 17 - Par~1lel Filu-In, Run 7 •

-215-



law

APPE.NDIXK VMi _______________________________

V3 !03 0-1 11 0e 0004

I ~ 1-73 Z-~ 37 1-25 1.17 ' 0

V '3 1-58 1.0 1-31 t.19 1-12 1-05

I 1._3 I-2 1-37 A1.26 S 17 1-10 1.05 i
V

3
1.53 ;.5S 19 1-19 1.' is08c 1-04

,2 2s 1.20 ?.'-A s1 to1.7 1-04 1.02
0 4

Figure VIII-18S Pa~rallel Fill-In, Run 8



APPENIDiX V-m __________

AS 9 03 00( 1

0 v 0 0

1I -03 O 0 20 0-25 0 2c 0-00 -0.31 -

* OSg 42 0-1 ,00 -62 -10

0 0 -0S9 0 6

-~-0a56 -0 20 0.00 0.^_s 0(3 -220 05

-l -0-39 0.00 0.20 *-25 0.20 -- 00 -0-39 -

0.0 0-39 0-6 C. 9 U. 56 0ý3g 0.00 -

Figure VIII- 19 -Paraliel FiUl-Iri, Run 9

-217.-1



APPENDIX VUI

1.S 2 2 2 2 2 2 2 2.5

1 1.53 1-76 1.91 2.00 2.09 Z.23 247 3

1 1-3S 1.62 1.83 2.00 2-17 2.38 2.64 3

1.30 .57 10.0 2.00 2.20 2.43 2-73 3

S 1.-29 156 1.79 2 00 2.20 244 2_71 3

1 1-31 1.57 I-8o 2.00 2.20 2.43 2.70 3

1 1.36 1.62 1.83 2-00 2.17 2 38 2-64 3

S1.53 1.76 1.91 2 00o 2.09 2-23 2.47 3

1-5 2 2 2 2 2 2 2 2.3

Figure VIII-20 - Parallel Fll-I.n, Run 10

-218-



API-ENDIX VIII

05 %2 %3\4 % N4 .3 2

0 0"G 1_-'0 1.50 1463 1 59 144 1.23 1

0 0.47 082 1.06 1-20 1-23 1 .ZO 110 1

028 053 0.-7 0-8 3,-92 C.96 096 1

0 0.14 0.29 0.42 056 0.63 0.72 0 8s

0 0-01 C.04 0.12 0.22 0-32 C.48 0.72 1

0 -0.16 -0.24 -C.21 -0-13 -0.04 0-14 0.47 1

0 -0.43 -0.-6 -0.59 -0..%6 0.50 -.33 0.03

-0.5 -1 -1 -1 - 1 -1 -1 1

* 0 0 0 0

Figure '/1/-I - Parallel Fill-In, Run 11

-219.. -•



APPENDIX VIII

can be improved by the use of acceleration parameters. Further, since

in practice the number of internal mesh points involved in the solution of
Laplace's equation will greatly exceed the number of processing units

available on a parallel processor, a "parallel by block, sequential by

point within a block" type iteration must be used and such an iteration

is well suited to the method of successive displacements.

The PFI method for obtaining initial approximations to Laplace's equa-

tion over the interior points of a mesh is ideally suited to parallel exe-

cution.

A test for convergence based on maximum pointwise change in approxi-

rmation values between successive iterations could be accomplished readily

on Machines I or II due to the rapid sort capability.

5. CONCLUSIONS

This appendix has reviewed several mathematical techniques and analyzed

their suitability for parallel execution. These techniques are Jacobi'.

method for the determination of eigenvalues of real symmetric matrices,

the relaxation solution to a system of linear algebraic cquations, numeri-

cal solution to Laplace's equation, and mesh fill in. Each technique, was

seer, to be amenable to parallel execution. It vas further seen that each

techn-dque involved searching a set for the element of maximum magnitude,

a process well suited to a machin7e having sorting capability,

The inherent parallelism resident in each of the techniques provides a

suitable basis for a study to determine optimal methods of parallel exe-

cution.

"6. REFERENCES

1. Faddeev, D. K., and Faddeeva, V. N.: Comrutational Methods of
Linear Algebra. San Francisco, Calif., W. H. Frearn ando-,
T9ET-

2. Beckenbaugh, E. F.: Modern Mathematics for the Engineer. New
York, N. Y., McGraw-Hill, 1965.

-220-

-~- --4 p* *f.~..ry- -- ~---;7.'"



APPENDIX VIII

3. Forsythe, G. E., and Wasow, W. R.: Finite Difference Mathods
for Partial Differential Equations. -
and Sons, 1959.

4. Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.,
Prentice-Hall, T1962

5. Macon, N.. Numerical Analysis, New York, N. Y., John Wiley and
Sons, 1963.

6. Householder, A. S.: The Theor of Matrices in Numerical Analysis.
New York, N.Y., Blai-dell Publishing Co., 1T65.

-221-



el5

APPENDIX IX - MACRO INSTRUCTIONS FOR A PARALLEL PROCESSOR

I. INT, ODUCTION

Concurrent with efforts directed toward the design and efficient utiliza-

tion of parallel processo-s has been the realization that computational

capabilities resident in parallel processors give rise to new ways of

thinking about problems, their fundamen'al structure, and appropriate

solution models. It is therefore desirable that macro machine instruc-

tionE, in fact a programming language, be developed that allow and in-

deed promote ease of coaceiving and expressing the structure of parallel

solution models. This appendix presents a brief list of instructions ca-

pable of compactly representing operations within a parallel solution model.

Computational examples are given alcng with a suggestion for expanding

and generalizing the instructions into a programming language.

2. DEFINITIONS

_- ILet the Greek letters 0, •, ,, . . denote vectors of the form

= (al, a.. . . , n) (.)

where a. (i 1, 2, ,, n) is a. real number unless otherwise specified.

in cxpressiona such as

a (a a , . . . , (2)

the subscript n means that a is to be considered an n vector.

3. INSTRUCTIONS

a. General

In the following instructions, a, /, ' are as defined in 1I) and f denotes a

-. 22~.•

L~~. J,



APPENDIX IX

real number. The elements a., i = 1, 2..., n of a vector a

(a,' c2, . ) correspond to real numbers stored in a parallel proc-

essor. In general, an instruction will specify the execution by the paral-

lei processor of some rule of assignment, r that associates with the

vector(s) a a vector -. For example:

1. Suppose there is a vector a = (alI a2 .... an)
and the vector y = Za = (2a, 2a , Za) =

1' 2' n
(Y' . . Z) is desired. Then an instruc-

tion is specified directing the parallel processor

to effect the following rule of assignment:

IF: a - za =-

2. Suppose there are vectors a = (al, a2 . . . . . 0an)

and (1 OZ,' . fIn) and the vector , -•

a + (al + 01 a 2 + O2 ' an + h3)

(-Y 1' 2 . .' - ' n) is desired. Then an instruc-

tion is specified directing the paralle] processor

to effect the following rule of assignment:

F: (a, a + - .

b. List of Instructions

A list of instructions follows. They are designed primarily to specify

the parallel execution of common arithmetic operations frequently en-

countered in computational procedures.

I. Shift right/left: ( -,, t) ()/(a.-, t) (a). This in-

struction operates oxi a single vector, a = ( a 2,
S..., an), to produce a vector y = (-yl. y 2 ,

S.... ,Yn) linder the rule of assignment:

0 for I: i t
•i = for (-- t) (c)

-Yi a or t < i - n

and

-224-

7_ ý lip



APPENDIX IX __-__.....

0 for(n - t) < i • n
a for l ( i for (--, t) (a).
ai+ t °rI -i -( - )

Note: a is unchanged; any overflow is lost.

Example: Leta = (1, 3, 5, 7). Then

y = (-., 2) (a) - (0, 0, 1, 3)

y = (--, 1) (a) a (3, 5, 7, 0)

2. Shift right/left oae: (.1-, t) (a)/(-l, t) (a). This

instruction operates on a single vector, a a (at,

aG . . .. an), to produce a vector - 2 (I'1 Y2
... n) under the rule o! assignment:

I for I 1 t
-i= 1  t:r t < i for (1"--, t) (u) ,

and
•- fr ( - t) ( i n

'Yi= 1 I ! f (n -0 for (-*-1, t) (al0i t for I< i (n -t)

Note: a is unchangeld; any overflow is lost,

Example: Leta a (7. 9, 1, 8, 5). Then

y x(i-, )(a) a(1, 1, 1, 7. 9)

•,V (-1-. 4) (a) 5 . .1 )

3. Spread right/left: .. j-.. t> (e}/<.ei t) (a). This

instruction operatep on & single vector. a 3 (@o *at

. . ..n). to produce a vector Y ' t I'YZ y ..

Yn) under the following rule of assignment:

aln this and the iollowt'ng instructions where 00 is upchanged. " if g yEor
example. a a (-a , t) (a)). the posikions &,f a ar assigned new values under
the rule of assignma nt for the Instruction.

... . 4v

1. ..6. ........ .". .. . . r . .



APPENE•IX IX

,li = aj • = j <2jj.for 1< j

y. r ( +'t) for <j.,t> (a)

- iorOj+ t) i - n

and

i for I • i < (j -t

j.- for - t IS" j for 0-j, t> (a)
:i for i -•n

Note: a is unchanged; any overflow is lost,

Example: Leta = (7, 9, 1. 8, 5). Then

Y- <2--- 2> (a) = (7, 9, 9, 9, 5)

Y < -3, 4> (a)= (1 1, 1, 8, 5)

Note: overflow occurs in the above example.

4. Rotate right/left: (RR, t) (a)/(RL, t) (a). This in-

struction operates on a single vector, a = (al, a 2 ,

S... an), altering it as follows. The elements

of a are shifted right/left t positions. Overflow

cut the right/left is added in on the left/right.

Excample: Leta = (7, 9, 1, 8, 5). Then

(RR, 2) (a) = (8, 5, 7, 9, 1)--a

(RL, 3) (a) = (8, 5, 7, 9, 1)-a* a

5. Set sign plus/minus: FSPJ (a)/!FSM] (a). This in-

struction operates on a single vector, a = (a, aG2 i

an), altering it as follows. Each element

1a. of a is set to la./- Ia 1. Example: Let a

(-1, 0, 7, -4, Iw). Then

-226-

7 I~ ~_7



APPENDIX IX

[SSE (a) = (1, 0, -7. -4, -12)-..a

6. Scalar add/subtract/multiply/divide: L_ •/- AJ/
/F /-, ] (a). This instruction operates on a

single vector, a = (alr, a2 .... ,n), to produce

a 'vectoz y = (,yI y2p .... Nn) under the rule of

assignment:

[(a + f)i•";' - f;/(ai X f)/(a fi)

Note: a is unchanged.

Example: Let at (7, 9, 1, 8, 5), f 3. Then

S-['+, ] l(a) -(10, 12, 4, 11, 8)

y I-Y , ( (a) = (4, 6, _., 5, 2),

ly = [x, • (a)= (21, 27, 3, 24, 5)

y E - D-, (a) ( (7/3, 3, 1/3, 8/3, 5/3)

7. Vector add/subtract/multiply/livide: 0/9/0/4

(a, 0). This instruction operates on an ordered

pair of vectors (a, ):

a i ( 11) "11 . . . an)

0t (P Ifl S l .... , Pn),I

to produce a vector

y N I - *Yz-' *•%

under the following rule of assignment:

Yi= a(a, + P1)/(a1i - jictislpi)

Note: a and a are unchanged.

-22?.

~ -& ~ ~ ~W



APPENDIX IX

Evample: Let2 = (7, 9, 1, 8, 5), (3 (2, -3,

1/3, -16, 1). Then

0(a, () = (9., 6, 4/3, -8, 6),

e (a, 1) = (5, u2, 2/3, 24, 4)

J(a, 3)= (14, -27, 1/3, -128, 5)

* (a, 1) = t'(/Z, -3, 3, -1/z, 5)

8. Sum: - (a). This instruction effectively is a sub-
routine. -It operates on a single vector, a = (a1 , a2 ,

an), to produce a I-vector -y (•y) under

the following rule of assignment:

n

Not#-: a is unchanged.

Exanmple: Leta = (7, 9, 1, 8, 5). Then

Y= Z(a) = (30)

9, Chaini: IT(a). This instruction effectively is a sub-

routine. It operates on a single-vector a = (*I, a2'
S. .. . an) to produce a 1-vector y = (Vl) under the

following rule of assignment:

n
' I I ai

Note: a is unchanged.

Example: Leta (7, 9, 1, 8, 5). Then

, "(a) = (2520)

-228-



APPEN-DIX IX

10. Create: C(a, n) (a1. a,, .- . an). This instruc-

tion causes a vector of lenath n, called a. to be

stored in the parallel processor with elements a.

specified with the instruction.

Example:

C(a. 7) (0 1, 0, 0, 3 o, 0 0)-.-a .

11. If: IF (b, E )r, a, t. This instruction specifies a

transfer of program control according to the follow-

ing rules:

a. Letse = (al a2.... an) and E

(Ell 1 -2' I £n) be n vectors.

b. Let r, a, t specify locations to which

program control can be transferred.

c. Then program control will be trans-
ferred to r, s, or t according to
whether a i < fi' a i = Elt ai > E i

for all i = 1, 2, . . . , n.

4. SAMPLE PROGRAMS

a. General

Some sample programs written in terms of the instruction list are ex-

hibited below. The existence of a "DO ILOOP" type instruction is as-

sumed.

b. Program 1

Given X0 , &, n

Construct V = (X 0 1 X0 + , X0 + z, . . . , X0 + n) n+ I

Define: L = [1n2 (n -I) (by [X]is meant the greatest integer in X)

Procedure:

-ZZ9-

won pop MWA



APPENDIX IX

C(V, n + 1)(0, A 0,0,. . . , 0)

DOMk =0, L

V v2 < k )(V)

V (B(
S~= + l-- v

S• M v = I*, v**)

- L X I (V)

Then

V (X 0 , X 0  0A, +ZA,, X0 +nA).

Example: Let n = 8. Then L =• (7 = Z.

The program would proceed as follows:

C(V, 9) (01, A, 0, 0, 0, 0, 0, 0, 0)

Going through the DO Loop would give:

K=0

V (---, 1) (V) =-(0, 0, A, 0, 0, 0, 0,0, 0)

.V** -. , I> (V) - (0, A, A, 0, 0, 0, 0, 0, 0)

V ( (VV )(0, A, ZA, 0, 0, , 0, 0, 0)

K= I

V =(-.-, 2)(V) = (0, 0, 0, A, 2A, 0, 0, 0, 0)

V = , 2 (V) = (0, A, 2 A, Za, z2A, 0, 0, 0, 0)

V = (V, V*) = (0, A, 2A, 3A, 4A, 0, 0, 0, 0)

K=2

V = (-., 4)(V) = (0, 0, 0, 0, A, 2A, 3A, 4A)

V - <=5--, 4> (V)= (0, A, ZA, 3A, 46, 44, 4A, 4A, 4A)

V S(V, V (=0, ,A 2,3A, 4A, 5 A, 6 A, 7A, SA)

-230-

~ ~ *



APPENDIX IX

and finally

V = [ IV) = (X0 , X0 + .... X0 + 8A)

Program 2

Given a = (a1 , a2l ... , = a1' •2' .. On)

Construct: Y = t ' the scalar product of a and

Procedure:

V = 0(a. )

V= 1(V)

Then V = (- 1 ), where

n

YI = E aipi
i=l1

Example: Let a = (1, 3, 5), 3 (2, 4, 6),

Then

V = O(a, 3) = (2, 12, 30)

V = I(V) (44)

Program 3

Given: a = (a,, a2  Ona), E= (Ell E2' E n

whereai > 0, Ei >0 for. i 1, 2, .... n

Construct: y = (yi' y2 , " ' "' where yi = vlI' and tf is the con-

vergence criterion for a Newton iteration

Comments: A Newton iteration for finding Vx/ proceeds as follows:

g. - + g)
gi + I = + gi ,

th

where gi denotes the i approximation to V%'. The manner of determining
i

-231-



APPENDIX IX

the iniiial guess, go, depends on the range of x and, in computer solu-
tions, the manner in which a number x is stored in the machine. In the

program to follow, x/2 is used as an initial guess to V%/.

Procedure Corresponds to

G = [x, 0.5) (a) gi = x/2, initial guess

4m B = (a, G) x/gi

9 = *(B, G) x/8i+ &

X= 0: .5] () g+ g.)
8 - (N, G) gi + I gi

S(SSP] (8) gil

IF(8, )r, r, t 1i + I gi ?

t G =Y No, (i t l)--i

Go to m Iterate again

r Continue Yes, gi + I =

and then y = ()I' * . n)where Ni

5. OBSERVATIONS

Some of the properties of the instructions listed above are as follows:

1. Instructions I through 4 involve essentially a shift-
ing right or left of the elements of a vector a =

(0 1 , a2, . . . an) with options of dropping over-

flow with corresponding fill-in by O'., l's, or end-

around carry. The resulting vector is an n-vector

y = (Y 2 ' " y2' y) with elements from

10 , 1 . l (ii i - , , . . ni

2. Instructions 5 and 6 involve a specified arithmetic

-232-

44



APPENDIX IX

operation on each of the elements of a vector a =

(alI1a 2, .. . an). The resulting vector is an

n-vector y = ('yl, y' . , ,n) with elements

specified in ter.mts of {ail, i 1, 2,... n and

a common arithmetic operation.

3. Instruction 7 involves an ordered pair of vectors
(a, 01J, a (a l l a2 # . . .. . an)' f0 = (O i' t

S, •n) and a specified arithmetic operation

for each of the couples (a,. 13), i = 1, 2. . . n.

The resulting vector is an n-vector y = (yy, y?,

. . , IYn) with elements specified in terms of the

couples (ai, .i)' i = 1, 2, ... n and a common

arithmetic operation.

4. Instructions 8 and 9 involve a specified arithmetic

operation applied to the set of elements jail, i =

1, 2. . . . , o favectora = (a 1 9 a2, . . t an).

The resulting vector y = (-y1) is a 1-vector whose

single element is specified in terms of the set

(ail , i = 1, 2, .... n and an arithmetic oper-

ation.

5. Instruction 10 creates a new vector with elements

specified by the programmer.

6. Instruction 11 specifies a transfer of control, based

on the results of a tist.

The above observations euggest that further study of these and other in-

structions, yet to be defined, will produce new insights into the nature

of problems, possible solution moodoiq, and notations in terms of which

solution models may be written. Experience has, in fact, already shown

this to be true. The instructions discussed in this report were the re-

sults of an effort to determine arithmetic operations that would be fre-

quently encountered in machine computation, and instructions that would

-233-

___ __ ___ __ __ ___ __ __ _ if
__ _ _ _ ,- - M



APPENDIX IX

compactly specify parallel execution of such operations. The list of in-
•:structions is quite short. Efforts to express parallel solution . odels in

terms of these instructions Can be expected to produce changes in instruc-

tion form and definition, suggest new instructions, and lead to the formu-

lation of a FORTRAN type language. The execution on a parallc1 processor

of programs written in such a language would require the construction of

a compiler to translate instructions of the type listed iato an efficient

program of micro instructions acceptable to the processor.

6. CONCLUSIONS

Attempts to write parallel solution models and to express the operations

-involved in a compact notation have led to the development of a prelim!-

nary list of macro instructions for a parallel processor. Experience gained

in constructing parallel solution modelo and writing programs for theni

could provide a basis for modifying presently proposed instructions and

defining new ones.

The definition and modification of instructions is essentially an effort to

express compactly the operations characterizing a problem and structur-

ing pC13sible methods of solution. Hence, it is hoped that further develop-

ment of instructions will suggest new conceptual modes in which problems

and possible solutions may be analyzed, and provide -insights into the na-

ture and significance of parallelisn. within a problem and methods for ex-

ploiting it by new computational procedures.

I

-234-

-7.



APPENDIX X - PARALLEL COMPILATION

i. INTRODUCTION

Investigations into machine structure and parallel execution of coded

routines led logically to the problem of compiling a source program in

parallel. In other worfis, given a sequence of statements written in, say,

MAD (Michigan algorithm decoder) or FORTRAN (IBM formula translat-

ing system), how can a parallel processor be used to compile the entire

set of statements in parallel'9

In this appendix, an algorithm for parallel compilation is developed, a

method of simulation on a sequential machine is described, and the re-

sults of a simulation for a small set of replacementu are presented. It

is assumed that the language statements are written in MAD and that the

precedence hierarchy is that of Arden, Galler, and Graham.. a, b The MAD

language was chosen because documentation on its structure is readily

available and because techniques developed through MAD can be extended

to other languages.

2. PARALLEL COMPILATION

a. General

During the process of compilation, a sequence of stateme*7nts written in a

higher language such as MAD is translated into a se-luence of machine

language statements. The compilation process usually decomposes higher

language statements into a matrix form of triples and then, from the

matrix, establishes a set of machine language statements. Included in

aUniversity of Michigan Computing Center: Michigan Algorithm Decoder.
Ann Arbor, Michigan, June 1963.

bArden, B. ; Galler, B.; and Graham, R. : "An Algorithm for Translating

Boolean Expressions, " Journal of the ACM, April 1962; 9:Z22-239.

-235-

4WIt

- 4~m~~~* ~- -o



APPENDIX X

the compilation process is the handling of such considerations as dimen-

sion, mode, and storage allocation.

The compilation algorithm developed here deals only with the decomposi-

I tion of higher language statements into triples. The statenents are re-

stricted to replacement types involving nonsubscripted variables. The

previously cited precedence hierarchy is limited to the set of operators

given in Table X-.

TABLE X-I - PRECEDENCE HIERARCHY

Operator Des cription Precedence

* ABS. Absolute value tughe st

• P. Exponentiation

-u Unary minus

*, / Multiplication, division

,- Plus, minus

Equals (substitution)

-, i, , ) Begin statement, end Lowest
statement, open paren-
thesis, close paren-
thesis

It is further assumed that the replacement statements are stored, symbol

by symbol, in an oridered list. For example, the MAD statement

F = A + B*, ABS. (C + D) (

is assumed to be stored in a list as:

04 Index, i Item

0
I F (Z)

F

3 A

r . . . . . . . .. .- s-- . s . • mum



APPENDIX X

Index, i Item.

4 +

5 B

6 *

7 .ABS

8 ( (2)

9 C
10 +

11 D

12

13 4

Later it is shown that the eet of tiiples corresponding to (2) is just:

Triples

C + D

0 ABS. R(

B (3)
A + R3

F x- R4

In (3), R, denotes the resu.%4.st from the ith triple (row). Now (3) is read,

row by row, as:

R I C+DI

Ra z "ABS.(R I

R 3  + A2

R 4  A+R 3

F R4

. A+B* ASS.(C D)

Not* that the fUal readiS se juat 0 I).

-M7 - ....

~ 6



i
APPENDIX X

b. Compilation Algorithm

In parallel compilation, one tries in successive passes to examine simul-

taneously many statements such as (1), stored in the fashion of (2), and

c tc form on each pass all possible triples and simplifications for the en-

tire set of statements.

An algorithm for effecting parallel conpilation is shown in Figure X-1.

On each pass, the tests (operations) indicated in Figure X-1 are applied

to a list such as (2). Sequences of items taken 3, 4, or 5 at a time are

sougl~t that me-t certain conditions (blanks are ignored). If the indicated
conditiors obtain, triples are formed and/or stitemen*s are simplified

as indicated.

As the structure of the flow chart in Figure X-1 indicates, the four oper-

ations may be executed concur ently; and the algorithm is capable of de-

composing, in parallel, all the substitution statements of a source-

language (MAD) program into a string of triples ready for final assign-

ment (machine language). Several passes through the loop may be re-

quiroC, ihe number depending on the size and complexity of the program

to be comp;'.

The operations indicated i4, Figure X-l proceed as follows:

1. Operation . looks for quadruples ABCD, w:here A

is an operator; B is either a "-u" or an ". ABS. ";

C is a variable; D is an operator such that P(D) 5

P(B),, where P(X) elsnotes the precedence of X as

given -n Table X-1. It is assumed that B is the
th

a itern on the irnput list, Variable C is removed,

and B is replaced by the variable R a. A triple is
formed of 0, B, and C, and its resulta,)t is stored
in R

a

2. Operation Z looks for all quirnturles ABCDE, where

A, C, and E are operators; B and D are variables;

-238-



APPENDIX X______________________

>

zz

00

z z

0t III II ii i
'\D (

~J

Fiur -l-Paale omiato Agrih

-2 9-W
All I I', 0 1j



APPENDIX X

and P(A) c P(C) = P(E). It is assumed 'at C is
th.

the t item on the input list. Variable 13 and D

"are removed, C is replaced by R•, and a triple

* is formed of B, C. and D, with a resultant R.

3. Operation 3 r-,rnoves the parentheses surround-

ing single variables.

4. Operation 4 removes all sequences i-A4 , where

A is a variable.

Subsequent to the execution of these four operations, control returns to

Operation 1 if the input list is not empty. Otherwise there is an exit.

In seven successive passes noted under Items c through i, below, the

compilation algorithm is applied to the statement (1), as stored in the

list (2), and the set of triples is developed. In each of these passes, the

procedure is to work through the scheme detailed in Figure X-1.

c. Pass 1

For Operation 1, the quadruples y, a, V, 0 ao not exist, so that P(a)
P(P", at t. ABS., -u .

For Operation 2, the quintuple (C + D) fulfills the requirements of a. V,

A, W, y, where P(a).c P(P) -' P(y). Hence, + is replaced by Ri 0 , where

R10 is the triple C + D. Now C and D are rernoved from the list.

For Operation 3, there exists no triple (, V, ).

For Operation 4, there exists no triple I-, V, 4 .

After Pass 1, the list (2) reads as folbnws (where A denotes a blank):

Index, i Item.

0

1 F

2

3 A

-Z40-



APPENDIX X

Index, i Itemi

4 +

5 B

6 *

7 .ABS.

8

9 A

10 R10

12

13 4

d. Pass 2

Only the condition specified by Operation 3, obtains, namely (RI 0 ). The

parentheses are removed from the list. After Pass 2, the list (2) reads:

Index, 'i Item.

0 1-

1 F
2 -

3 A

4 +

5 B

6 *

7 .ABS.

8 A

9 A

10 R10
11 A

12 A

13

-241-



2 APPENDIX X

Only the condition specified by Operation I obtains for.*, .AB3S., R0, 1 .

Hence, . ABS. is replaced by R 7 , where R7 is the triple 0. ABS. RIO'

Now, R10 is removed from the list. After Pass 3, the list (i) reads-

Index, i Item.

0

I F

3 A

4 4

5 B

6 *

7 R7

8 A

9 A
i0 A

11 A

12 A

13 -4

f. Pass 4

Only the condition specified by Operation 2 obtains for +, B, , R 7 ,

Hence, * is replaced by R6 , where R6 is the triple B*R 7. Now B and R7

are removed from the list. Ater Pass 4, the list (1) reads:

Index, i Item.

0 I

1 F

2

3 A

-24?.

*4* '



L
APPENDIX X

Index, i Item.

4 +

5 A

6 R 6

7 A

8 a

9 A
10 A

11 A

12 A

13 4

j. Pass 5

Only the condition specified by Operation 2 obtains for =, A, +, R 6 , .

Hence, + is replaced by R4, wi- re R4 is the triple A + R Now A and

R6 are removed from the list. After the Pass 5, the list (1) reads:

Index, i Item

0

1 F

3

4 R4

5 A

6 A

7 A
8 A

9 A

10 A

11 A

12 A

13 -4

-243-



APPENDIX X

h. Pas 6

Only the condition specified by Operation 2 obtains for -, F, =, RC4  "

Hence, = is replaced by R., where RI is the triple F R4 . Now F and

R are removed from the list. After Pass 6, the list (1) reads:

Index, i Item.S~-'1

0

2 RZ

3 A

4 A

5A
6 A
7

8 A

9 A

10 A

11 A
12A

13 "4

i. Pass 7

Only the condition specified by Operation ' obtains for I-, R', 4 . The

list is emptied. By now the compilation scheme has generated the follow-

ing triples in the order indicated:

Index Tripgles

R1 0  C + D

R7 0 ABS. R10

R B * R.,6

R4 A v k 6
RZ F R 4

-244-

-V9¶



APPENDIX X

This is effectively (3) and is read as:

F R4

= A B*R 7

A+ B*.ABS. Ri 0

A+ B*. ABS. (C + D)

j. Conclusion

In this example, only one replacement statement was compiled. The compi-

lation scheme is intended to compile many replacement statements simul-

taneously, and the relative speed advantage of parallel over sequential

compilation increases, within machine capacity, with the number (and

complexity) of statements to be compiled.

3. SIMULATION MODEL AND RESULTS

The compiler algorithm developed under Item 2 is designed to be imple-

inented on a parallel processor. Since no such machine is av4ilable for

checking out the algorithm on a sample problem, simulation of parallel

compilation must be effected on a sequential machine. To effect the simu-

lation, code PARCOM (parallel compilation) was written in FORTRAN IV

for the IBM 1410. Code PARCOM executes the compilation algorithm in

an effectively parallel fashion on a giveii set of replacement statements.

Code PARCOM operates as follows:

I. A sequence of replacement statements, such as

(1), is read into th-e machine.

2. The symbols comprising the statements are ex-

aminet and classified as variables, operators, or

blanks; and precedences aze assigned to the oper-

ators.

-24-5-

~ .- WAR=



APPENDIX'X _________________

3: Tests specified by operatious 1, 2, 3, and 4 in Fig-

ure X-I are applied, in an effectively parallel fash-

ion, to each of the replacement statem~ents.

4. Based on the resuxlts of the tests, triples are formed
and/or' `s tern~nt simnplifications are made.

5, Steps 3 and 4 are repeated as necessary.

After epach pass through the set of statements, code PARCOM prints out

the triples formed during the pass and the resultant set of statements.

To check the algorithm, the following set of seven replacement state-

ments was selected-

Number Statement

I F- *I *B+AX1+R ,ýA S.
2 ol _ -B +(B*B - 4*A* C). P'. 2 /(2*A)

3 H =(A + B). P. [c;*(D + E:*P/. ABS. )

4 1=A 4-B +C -D*E (4)

5 U F -1G

6 V.-H*I

7 W =-ABS (U. P. V)

The results of applying the compilation algorithm to the set (4) are pre-
sented in Tables X-Z through X-13. These tables show (4) initially in the

form of tite list (2) and the results of successive passes. Table X-14

shows the entire list of' triples generated.

¶ As an example of how the triples represent the replacement statements,

selected from Table X-14 are those triples into which Statement 1 was de-

composed, namyely:

-2-46-



APPENDIX X

Index Triple_

I A * X

2 O - S

15 B + R

16 0 .ABS. P2

Z2 R •P. RI 6

27 X * 1 5
30 C + R27

35 X * 30

37 D + R 3 5

40 R3 7  + RZ

42 F R 40

These coribine as

F R4 0
-R37 + R22

- D+ R 3 5 + R.P. R 1 6

SD -t X*R 3 0 + R. P.. ABS. R2

D + X*(C + R2 7 ) + R. P.. ABS. - S

- D + X'(C *X, 15 ) + R. P. . ABS. - S

SD4 X*iG + X*(B 4 R)1)A4R.P..ABS. - S

D D4 X*UC + X*(B + A*X)] + R. P.. ABS. - S

The last statement is Statement I from the set (4).

The triples generated on each pasis correspond to basic arithmetic oper-

ations that can be perforrnmd at the tiime of the pass. Hence, the compila-

tion algorithm genera ea triples suitable for parallel execution and pro-

vides a first approach to the recognition of low level paralltlism within a

source program.

-247-

IF WWo .AN 0 MENW1.Ak



APPENDIX X

TABLE X-2 - REPLACEMENT STATEMENT SET

Resulting statement
Index 1 2 3 4 5 6 7

1xI I- t.t I- I - I-

2 F G H I U V W

3 -=

4 D ( A F H -

5 + A + + * ABS.

6 X B + B G I
7 * + B + 4 - U

8 ( ( ) C .1.
9 C B .P. - V

10 + * ( D

11 X B C *

12 * - * E
13 ( 4 ( 4

14 B * D
15 + A +

16 A * E
17 * C *

18 X ) P

19 ) .P. /
20 ) 2 .ABS.

21 + ) X

zz a /
23 p. (
24 ABSM 2 4
25S - *

21 S A
27 -4

•-" ~28 '1

-248-

,low



APPENDIX X

.'ABLE X-3 - RESULTS AFTER PASS I

Castributia
lade1 Triples statement

I A x

1 0 I
3 0 5

5 4 A 2

6 2 A 2
7 A + a 3

8 z P 3
9 0 ADS. 5 1

10 A a 4
11 D z 4

12 F 0 G
13 14 1 6

14 U P. V 1

Resulting statements

1

z r 0 HG I u v w
3 a 0 = j 0 - a
4 D ( k. A a
S + A3 A t 0 RIO Ala 1 ABS&
6 % 4 R7
7 X + A A A

a I C R14
9 c a .P.A

ICo 1
j.4 A )

11 x a c al

Is 0 * 10 a
13 A

14 It D
IS A

is A A
is P. /
2'0 3 Aj

88 a / 1
Z} p. ( )

14 AD&. A

"a % %
16 £ A

.249-

$~ ~4~V~ ~ mW da~ *~ 2~~ ww~-~ --- lowi



APPENDIX X 
-

TABLE X-4 -,, fSULTS "TER PASS Z

-

I Contributiag

Indexj Triples jstatement
is + R1
16 0 ABS. R2 I
17 RS C 2

is Re R9 3
19 IO + C 4
20 u RIZ 521 V R13 6

Resulting stotements

Index 1 7 3 4 - 6 '
I~ b.

2 F 0 H I a2 [ W

4 A a a a

7 +R3 a a A a AnS.
6 X a R7 a 4 a a

7 + R~ 19 a

8 aA R1 4

9 C A .P.
10 + R4 ( A A

11 X A C R1"

12 * - + A

13 ( A (
14 A A D

15 RI A A +
16 A R1 7 A

11 A A A
18 A 1) A

19 ) P. R1is
20 ) 2 &

21 + A

zz R /
Z) .P. A

4 16 A

28I

N4TE a doom* bloo!-

I ! .45o-

I



APPENDIX X

TABLE X-5_, RESULTS AFTER PASS 3

Contributing
Index Triples statement

2 R • P. R
16123 R4 RI 2

24 D 4 + RI 8  3
25 R 19 RI1 4

26 0 .ABS. R4 7

Resulting statements

Index 1 2 3 4 5 6 7
I!

2 F G H I A A W
3 - - A A

4 D ( A A A A -

5 + 3A A A A R 2 6

6 X A R 7  A A A A
7 * + A A A A A

8 ( ( A . A

9 C A .P. R 2 5  A

10 + A ( A A

11 X a C A

12 * R2 3  * A

13 A A (
14 A A A

15 Ri 5  A R 2 4

16 A A A

17 A A A

18 A A

19 A .P. A
20 ) A

21 * )

22 A a

NoM A ott, blank

-25! -

: Own.s . . . . ...

Imoi,



APPENDIX X

TABLE X-6 - RE3ULTS AFTER PASS 4

- ~Constribuating
ladex Triples sttetment

27 x RI5 I

28 1 R 4
29 0 R6 7

R aultin statemeuts

Index 1 2 3 4 5 6 7

z F G H A A A w

3 = A AS

4 D ( A A A13

5 + R3 A A A A A

6 X a R 17A AAA
7 * + A A aA A

S ( A A A A

9 C a .P. A A

10 + A ( A

A A C a

13 R27 R133
13 a a a

14 A6 A a

SA a R24

16 a a A

17 A A a

16 a a a

19 a P. 6

31 * ) A

a4 A A
ua36 A a

C'NOTE: a denotes blank.

---mom,



APPENDIX X

TABLE X-7 - RESULTS AFTER PASS S

1'Contributing
index Triple. statement

30 C + 2  1

31 iN3 P. 2 2

32 C R2 3
33 W% 7

ae*ultia statements

Index 1 2 3 4 5 6 7

1 $- o. A A A "

F 0 H A A A A

3 a a A A A R33

4 D ( A A A A A

*+ A3 A A A A A

6 X A R7 A A A A

7 + A A A A A

( A A A A

9 A A P. A A

10 3 A ( A A

13 A A A A

12 A A 133 A

13 A A A A

14 A A A

is A A A

16 A A A

17 A A 4
is & A A

p A 31 6
0) a A

33A / A

23 RU A
34 A A 4

5A %
36 A A
"7 A

N0T3: A dosaotblsink.

.--
Now

,4I



APPENDIX X

TABLE X-8 - RESULTS AFTER PASS 6

S' d~ontr buti- ng •

Index Triples statement

34 R R
I3 +•n e 31

Resulting statements

Index 1 2 3 It 5 6 7

3 = G H A A A A

4 DA A A A

5 +A A A A

S6 a R7 A A A A

7 R 3 4  A A A A

8 AA A A

9 .P. A A
10 R3 0 A A A
11 A A A A A

12 A A R 3 2 A

13 A A a A

14 a A A

15 A A A

16 A A

17 a A A

18 A A

19 a A
20 A / A,
21 *

23 RZ1, A A

Z4 Ia 4i
ZS R 6~

26 a
217 Aj

NOTE: A denotes blat'%.

-- r 54 m



APPENDIX X

TABLE X-9 - RESULTS AFTER PASS 7

Contributing
Index Triples statement

3S X • R30 1

36 R7 .P. R 3 3362

Re l.sujngstatements

Index 1 2 3 4 5 6 7

3 u = A A A A

4 0 A & AA A

5 + A A A A A A

6 A A a A A

7 R3 5 R3 4 A A A A A

8 A A A A

9 A R i36 A A

10 A AJU AI A• A A

12 A A A A

13 A

14 A a

15 A A A

16 A A a

19 A A a

20 A~

"al +

23 ftzz A A

Z4 a a

25 A
26 A A

27

NOTE: a denotes blank.

-255-

~p4 -



APPENDIX X

TABLE X-10 - RESULTS AFTER PASS 8

i "--.. ...I :°ntributing"

Index Triple@ statement

37 D + 1
38 P. 4  / R6  2
39 H R 3

Resulting statements
SI 2 3 4 5 6 7

G A A 42 F 0 A IA A AA

3 R39 a A a A

4 A A A A
5 R37 A A a a aI6 a A A A a a a

9 A A A

9 a A

10 a A

12 a A A 4A

13 a A a a
14 a A A

15 a a A4

16 A A a

17 ja a A

13 46 A A

19 A6 A A

20 A A
21 *

22

24

NOTE: a dontes1a blg,

--46

= Z%



APPENDIX X

TABLE X-1I - RESULTS AFTER PASS 9

Index Tuiples statement

40 R37 +I2 1
41 G

RReosalting tatment.

h4z 1 2 3 4 516 7

1 r A A IA A

I" lA A AAA L

I4 _ AA , A

s A A
IA A A A sLA A

6 A A a A A A A
a A A A A AiA AI A A A• A A1

9 A a I A a A

10 A A aA A

11 a A a A
12 & A A a

13 A A A A
14 A A A

1s a a A
16 A a a
17 A a a
16 A a A
19 a A a
20 A a a
alR4 A A
at A A A

23 A A A
24 A A A
as a A
16 A A

Its
OTIL A dtoM !as

A -257.



APPENDIX X ....

"TABLE X-1Z,- RESULTS AFTER PASS 10

Contributing
Index Triples statement

42 FJ• R40 1

Resultina smattments

Index -17 2 3 t5 6 7

1 A A A AA

2 A A A A A

3 R42  a A a A a

95 A 4 A AA

S8 A A A A A

9 A A A .- A

10 A A A a

11 A A A A

12 A AAA

13 4A A A

14 a a A

15 : A al
16 A A A

17 A AJ

19 A 4,A

20 44

Z4I |f}

"i4

NOT.!- -Al H

" .•vk ,... ... ...- --.. • • :,. -- .- " • ... • • .-....



APPENDIX X

TABLE X-13 RESULTS AFTER PASS 11

Contributing
Imnd. Triples statemr.nt

None None None

Rems Ong statements

44
Index 1 2 3 4 5 6 7

1 A A a A a A a

2 A A a a A A A

3 a A A a A A a

9 A A a A A A
6 A A a A A A

7 A A A A A A

12 A a a A

13 A a A A
!10 A A A A -J!

12 A A A A

14 A A A

15 A A 4
16 A A

17 A A A
IS A AA

19 A A A

20 1 4 A

21 A A
2? jA A A

14 A A A

Z: A A

Z• A A

NOTE: A deotee bWa*dk.

-459-

S................ _ •• .• •..... ... .. . ... . .. . K • -=•.. . ...: : I



APPENDIX X

TABLE X-14 - TRIPLE SUMMARY

Contribatinl
"Index Triple@ sataement

1 AX 1
2 0 - s 1

3 0 B 2
4 5 * B 2

5 4 * A 2

6 2 * A 2

7 A # 3

8 £ * P 3

9 0 ABS. X 3
10 A + B 4

11 D 4 E 4

12 F + G 5
13 J4 1 I 6

14 U .P. V 7
15 3 R 1

16 0 AB& R2 1

17 RS C 2

is/ R 3
49 RI0 + C 4
z,0 U R12 S

S22 R P. R16 I

33 14 R1 7 2
Z4 D Ris 3

2s R RI 4
19 11

Z6 0 ABS. R4 7
27 X * 1is 1

as 1 R 25 4

29 0 R326
30 C * I

1 R23 P.
32 C R 134 3

33 W R i29 7

$4 K3 231

is X R A30

14 a? P. a3 3
37 0 It 3%
34 13)4 i'/ 1S 2
• RH R $

40 A3 ? %I I

41 0 13) a
_L V ~ I 4

- :. 60-



APPENDIX X

The compilation algorithm may generate triples involving variables not

available at the time the triples are formed. For example, Pass 1 gen-

erated these triples:

Index Triple

12 F + G

13 H * I

14 U .P. V

Now the resai '" for Triple 12[13] cannot be calculated until Statements

1 arnd and 4j] a:e executed. Similarly, the resultant for Triple 14

carnot be calculated until Statements 5 and 6 are executed.

This "premature" generation oi triples should pose no problem in ti.e

parallel processor, since Machine I (Appendix III) provides a "compute

on availability" option. That is, if the quantity A + B is to be computed,

the rmachine will delay the computation ,ntil suc% time as A and B are

available.



AJ

APPENDIX XI - FURTHER NOTES ON PARALLEL COMPILATION

1. INTRODUCTION

The notion of parallel compilation is discussed and an algorithm for ef-

fecting it is presented in Appendix X. Subsequent attempts to implement

this algorithm on a parallel processor (Appendices VI and XV) revealed

the desirability of modifying it because implementation of the algorithm

in its present form may require the initiation of an excessive number of

parallel processor "tasks" (Appendixes XIV and XV) and lead to extremely

"cumbersome control programs.

In this appendix, three modifications of the parallel compilation algorithm

"" are suggested. The first involves the translation of MAD1, a statements

into reverse Polish notation2 and testing for triple formation in parallel

with input operations. In the second, the tests for triple formation are

selectively applied a, compilation progresses. In the third the form of

the algorithm is changed.

A Throughout this ap'endix, the class of MAD statements considered is re-

stricted to replacement type statements involving nonsubscripted variables.

For a review of parallel compilation, see Appendix X.

2. PROBLEMS OF IMPLEMENTATION

The parallel -ompilation algorithm described in Appendix X specifies a

sequence of passes in which the concurrent application of a set of tests to

a list of replacement statements written in the MAD language results in

all possible tripl- f.ormations and/or statement simplifications. The

algorithm, as prcr;ented in Figure X-1 of kppendix X, suggests that ap-

plication of all t~e tests to all possible sequences of contiguous items

aSuperior numbers 'r th'! text refer to items in the List of References, Item 5,

Page 283.

-263-

-mow.



H

.APPENmX X1

Staken 3, 4, and 5 at a time. Investigation, however, reveals that in a

Scomputer implementation of the algoritl•n such a procedure would be
Swasteful of machine capacity. As a case in point, consider the expres-

sion

i F = A+ B* .ABS. (C D) . (I)

SOn the first pass over (1), the algorithm would combine C, +, D into a

! triple, say 11I. Clearly, on the next pass it is futile to look at items pre-

!• ceding the sequence (, 111, ) in the hope of obtaining triple formations and!-

i• or statement simplifications. Hence, to assign machine capacity to such

! testing is wasteful.

SWhile this potentially w asteful testing is easily recognized, its rem edy

S..... is not. Just how one m ight program a parallel processor to test those

(and only those'.) contiguous sequences of items where the specified con-

ditions may obtain is a problem dealt with in Item 3, below.

Yet another problem incident to the implementation of the algorithm sterns

from the fact that the several tests, being of different cornplexity, require

different arno-nts of time for machine execution.

This disparity of execution time leads to some rather severe programming

problems associated with triple formation and/or statement simplification

and maintenance of a valid item list. These programming problems should

not be attributed entirely to the form of the parallel compilation algorithm;

much of the difficulty, of program construction is due to the fact that both

the parallel processor and its associated prograrnmin• language are radi-

cally new and there exists hut little experience on wdch to draw in the

construction of programs.

, As a means o,• obviating the problems mentioned above, the folk. •'ing pos-
i sibilities were considered: preliminary translation of input sta, •rnents

to reverse Polish notation, and innovations in the utilization of the parallel

processor programming language. Both possibilities were investigated

•'• with fruitful results. An unexpected result of the investigation was the

-264 -



APPENDIX XI

development of a completely new form of the compilation algorithm. The

results are detailed in Item 3.

3. SUGGESTED MODIFICATIONS

a. General

In this section, two methods of implementing the parallel compila-

tion algorithm on the parallel processor are discussed. The first

method involves the conversion of MAD statements into reverse

Polish notation (RPN); the second involves programming innovations.

Subsequently, a restructuring of the parallel compilation algorithm

that offers greatly increased speed of execution is presented.

b. Reverse Polish Notation (RPN)

Polish notation refers to a method of representing logical formulas

developed by a Polish mathematician, J. Lukasiewicz. 3 The nota-

tion provides an unambiguous sequential specification of the order

of execution of logical and arithmetic operations without the use of

parentheses. The particular form of Polish notation used here is

RPN. In RPN, operators are written after the operands on which

they operate. A necessary condition for the use of RPN is that each

operator be associated with a definite number of operands. F~r ex-

ample, A + B would be written in :APN a* AB+ where + would be un-

derstood to operate on the two operands immediately preceding it

(A and B). Operands may in fact be the results of operations. For

example, the expression A+B*C is written in RPN as ABC*+ where

* operates on B and C, giving B*C, and the + operates on A and BC*,

giving A+B*C. The ability of RPN to obviate the use of parentheses

is seen by considering the expression 14 + B)*C, which would be

written as AB + C*.

Implementation of the parallel compilation algorithm may be facili-

tated by first translating MAD statements into RPN and then con-

structing triples from the RP1 representation. The MAD statement (l):

-265-



APPENDIX XI

F A+ B* .ABS. (C+ D),

would appear in RPN as

FABCD .ABS.* += (2)

which, for purposes of compilation, would be interpreted as

R1 CD+ C + D

R . ABS. 0 .ABS. R

R BR B * R
3B*R

R4 AR+ A + R3

R5  FR 4 = F =R 4

vhich is read as

F= R4

= A +R3

= A + B*R 2

= A+B* .ABS. R

= A + BA ABS. 'C + D)

which is just (1).

Figure XI-i gives a flow chart that specifies a method of translating

MAD statements into RPN. The method depends upon the specifica-

tion of precedences for operators and the use of a stack. Table XI-I

gives the required precedences. Note that these precedences differ

slightly from those of Table I in Appendix X in that it includes oper-

atore allowing the translation of ctatements involving logical oper-

( ations.

" I -. .66-



APPENDIX XI

LETa 1 , a2 , .*V, a** DENOTE THE INPUT STRING (LEFT TO RIGHT)

b ,... b *b DENOTE THE OUTPUT STRING (LEFT TO RIGHT)

1s,..., 2# ' • •DENOTE THE STACK (BOTTOM TO TOP)

START

Eii- 1+÷!•

k+ - k j+ 1 -0 1

"i U Sk TAA"PRO

-1~~ ~ +, k k!=

P U-AP(R P(s). INAsY
YES -. - i).' •

NOTE<
k~ -- k k~ -

P(X) < P(Y) MEANS OPKIMITON Y HAS NIGHURN PRECE0ENCE THAN OPERATOR X

PI () SHOULD 89 LESS THAN ANY OPECqATOPI

P fUNARY| > P (BINARY)

NOTE :

WORKS FOR BOTH UNARY ANO BINARY OPERATORS AS LONG AS THEY AMC

UNIQU,ý (Lj. 1UNARY - iS OISTINCT FROM BINARY - IN .NPUT).

Figure Xi-I - Translation from MAD to Reverse Polish Notat`ý*,n

-Z67-



APPENDIX XI

I.
TABLE XI-I-- PRECEDENCE HIERARCHY FOR

RPN TRANSLATION

Operator Description Precedence

* ABS., "u Absolute value, unary Highest
j minus

P. Exponentiation

A, / Multiplication, division

S- Addition, subtraction

, -, >, -•, •, Relations (with usual
= interpretations)

r Not

A And

V Or

:= Equals (substitution)

, -I, (,) Begin statement, and Lowest
statement, open paren-
thesis, close parenthesis

In the accompanying discussion only occurs and is
written as =

The translation proceeis basically as follows. Items are taken, left

to right, from the input string. LI an item is a variable, it is added,

in a left-to-right fashion, to the output string. If an item is an opt,. -

ator, its precedence is compared with the precedence of the topmost

ihem ,n the stack. If the precedence of the input item is greater than

or equal to the precedence of th, stack &tm, the input item is added

to the top of the stack, otherwise, the input item "sinks" down the

stack until it encounters a stack item whose precedence is no greater

than that of the input item. As an input item sinks in the stack, those

itack items whose precedmnces exceed that of the input item are re-

moved fro- top of the stack and added to the output string.

04

-268-

tw .WIV~fM .



APP NDIX XI

Parentheses require special comment. An open parenthesis, when

encountered, is placed on the top of the stack. A close parenthesis,

when encountered, sinks in the stack until a stacked open-parenthesis

is encountered at which point both are removed from further consid-

eration. Those stack items past which a close parenthesis sinks are

added to the output string.

Certain comments are also in order regarding relative precedences

of unary and binary operators involved in the translation process. It

is necessary, first of all, for unary operators to have higher prece-

dence than binary operators. Consider the following cases. The

string a. P. b. P. c may be interpreted either as abc or abc, the choice

being determined by the direction of scan (left to right or right to left)

of the input string and the placement of the equality sign on the paths

out of the precedence test box for operators (see F,.gure XI-l). But

the string a + B* • ABS. C admits of only one intcrpretation, namely

a + (b*( . ABS. (c))). With the precedence of unary operators greater

than those of binary operators, the expressi~in a + b* . ABS. C would

translate, correctly, into RPN as abc . AES. *+. However, if the

unary operation had lower precedence, the translation would produce,

incorrectly, abc* + . ABS. which implieis . ABS. (a + b*c).

Further, all unary operators should he of equal precedence. Suppose

one had to translate an input stri.,g . . BIUI U . UnVB 2 . ,

where the B's represent binary operators, the U's unary operators.

and V a variable. (Many unary operators are possible; for example,

" u' ABS., sin, log, etc.) Correct translation requires that the out-

put string appear in RPN as. . . VUnU . . . U . . which, in

turn, requires that the unary operators have equal precedence.

The process of parallel compilation utilizes RPN in the following

fashion. As MAD statements are read into the parallel processor.

they are converted into RPN, As soon as an operator Is inserted into

the RPN string, the parallel processor begins the iormation of the

-Z69-



APPENDIX XI

corresponding triple while continuing the read-in process. This

procedure allows compilation to proceed in paralle" with input.

The use of RPN in the compilation procedure, as outlined above,
greatly simplifies the task of the programmer in implementing the
compilation algorithm on a parallel processor. However, the use

of RPN in the implementation of the compilation algorithm seems

* unavoidably to result in a parallel processor machine program that

is rather slow when applied to a single statement. The slowness of

a program using RPN is due mainly to the sequential nature of the

translation process and the well-known inefficiency accompanying

the constraint of the parallel processor to a single sequential mode

of operation. Although the effects of this can be mitigated by the

concurrent compilation of many statements on the parallel proces-

sor, further efforts were made to discover a simple, easily pro-

grammed method of implementing the compiler algorithm that would

be free of slowness due to inherent sequential characteristics. Some

results of these efforts follow.

C. P:-_qramming Initovations

As pointed out in Item 2 above, irtitiil attempts tn implement tl-,

parallel compilation algorithm met with severe programming prob-

lems which in turn led to the use of RPN in the compilation process.

But the use of RPN was not wholly satisfactory. Hence, renewed

efforts were made to construct an efficient compiler program free

of the sequential limitations inherent in the uoe of RPN. The result

was an implementation whose flow diagram appears in Figure XI-2.

The implementation of the compilat'.on algorithm as given in this il-

lustration proceeds as follows. Reading left to right, the ith item in

a MAD replacement statement is denoted by Li; with each L it a'0oC1-

atew a number. KI. which may be 1. Z. or 3, T,% each Li is assigned

a pa,-allel procezvor task (the task# proceed in parallel) that deter-

mines whether or t.m L t may be used in triple formation or statement



WHAT

i +2 V~ R b-K

L 'OTHER 2. K. IlkA~3 + L.L

v 2+ I-

< PL,) PL.IV

3 Ii2



APPENDIX XI

ASTART

WI4ATIS L.,

L Is *

2 v

FOTHE
GENERAT GENERAT L1EAo

OT~EAS -4 R ERS .IR S K

L.~. L.OT E

-4G~IEYETRL EN R E

L - 2

k ~ ~ Pl_. XIZ- ýO Cat o arle CHmiANGE t

>47<

STRTBTR
MjRT *~ PIL 3 K L_ K. 2 K --.



APPENDIX XI

iimplification, tasks assigned to variables or resultants of triples

are suspended; tasks assigned to operators form triples or state-

ment simplifications if test conditions are met. If test conditions

fail to be met, the task detects whether failure is due to inappropri-

ate items on the left side, the right side, or botti sides, This infor-

mation-is stored in X i and used to re-initiate testing whenever

changes are made in items immediately to the left, right, or both

sides, Ki = 1, Z, or 3 indicates blocking on the left, right, or b:cth,

respectively.

NOTE: In Figure XI-2, the precedences of Table XI-1 are used.
Li j denotes the item j places to the right (+) or left (-) of Li; ti A

is, "blanks" generated by triple formation and/or statement simrpli-

fication are ignored.

The implementation of the parallel compiler algorithm specified by

Figure XI-2 offers a solution to a problem posed in Item 2, namely:

How does one program a parallel processor to test those and only

those contiguous sequences of items whý..re speci.fied test conditions

may obtain.-.This, of course. allows economical use of machine ca-
pacity in that all futile testing is avoided and tastcs are assigned only

to those items where triple formation and/or statement simplification

is occuring. Further, the control features given in Figure XI-2 (for

example, the "wait for both" boxes) allow the maintenance of a valid

and urunbiguous item list throughout compilatior.

Although the method of Figure XI-2 appears to offer an efficient,

easily programmed implementation of the parallel compilation alog-

rithm, preliminary timing estimates indicate that it is not significantly

faster than the RPN method.

d. Restructuring of the Algorithm

An examination of the compiler algorithm reviewed in Appendix X re-

veals that total parallelism of cornpilrtion has not been achieved. The

reason is as follows: Although the algorithm sppecifies on each pans

i
I

_3I

MrL
.~ ~.Y- 4



APPENDIX XI

the concurrent execution of all possible triple formations and/or

statement simplifications, the procedure is limited in that it exam-

ines only contipuous sequences of items taken 3, 4, or 5 at a time.

Hence, several sequential passes of the algorithm are necessary to

complete compilation. This limitation is also present in the modifi-

cations described above.

The question arises as to whether or not an algorithm can be devel-

oped that will concurrently examine each item of a list in terms of

all other items with which it may ultimately be associated in the com-

pilation process, and specify triple formation and/or statement sim-

plification in a fashion that achieves optimal compilation speeds.

This question is now considered.

Consider the MAD statement.

Z = (A + B)*C + D*((E*F + G)*H + i) , (3)

and the precedence assignment

Symbol Precedence

Variable 3 + 4N
* + 4N (4)

+ I +4N
R 0 +4N

where N denotes ths number of parentheses sets enclosing the sym-

bol.

Using the effective precedence due to parentheses inclusion. (3) can

be written in a list as

SMbol Precedence Symbol Precedence

z 3 + 5
V 0 B 7 (5)

"A 7 * z

-Z74-

L., . • ... ... ..... •,• •. • . -i• ••- -] m • • • • - ;-. - _ .



APPENDIX XI

Symbol Precedence Symbol Precedence

C 3 + 9

+ I G 11

D 3 * 6 (5)
* 2 H 7

E 11 + 5

* 10 I 7

F 11

The list (5) may be interpreted in graphical form as shown in Figure

XI-3. It will be noted in this graph how precedence modification, due

to parentheses inclusion, separates groups of symbols on the basis of

parenthetical grouping and obviates the need of further retention of

parentheses. The beginning and end points of the statement are arbi-

trarily assigned a precedence of -co.

SYMBOL

Figure X41-3 Graphical Interpretation of List (S)

-275-

-I ,- .~l --
i I I f IgP



APPENDIX XI

In the process of compilation, each triple is formed from two ordered

variables (or resultants) and a binary operator (one vxriable or result-

ant and a unary operator). Consider a single variable that is preceded,

and followed, by binary operators. In triple formation, this variable

4 will :e included in the triple corresponding to whichever of the two

binary operators is of higher precedence. For example, from the

statement (3) select (A + B)*C which is stored in the list (5) as

Symbol Precedence

A 7

+ 5

B 7
* 2

C 3

Select the variable B that is preceded by + and followed by *. Because

of parentheses inclusion, the effective precedence of + is 5 which is

greater than 2, the precedence of *, and thus B is to be used in the

triple corresponding to +. B will be used in the right side of tha triple

corresponding to + since + is on the left side of B.

As shown in Figure XI-3, B is at a peak on the graph as are all vari-

ables. To find the operator in whose triple a variable will be in-

cluded is quite simple. One simply "looks down the slopes" to find

the "nearest" (numerically greatest) operator, with which the vari-

able is then aisopiated. In the event that a variable has operators of

equal precedence on either side, the right operator will be cor.sidered

as having greater precedence. This convention conforms to the re-

quired interpretation of precedences in a concatenation of unary oper-

ators.

Now, since each operator will generate a triple, consideration must

be given to th, placement of the corresponding resultant in other

tripls. An examination of Figure XI- 3 will quickly auggest how

-ý76-



APPENDIX XI

resultants can be combined into triples. Each operator corresponds

to a "valley" (perhaps "plateau" in the case of concatenated unary op-

erators). But each operator also represents a triple and correspond-

ing resultant that must be treated as a variable. Hence, for each

operator one must search the graph, both to the right and the left,

until on each side an operator of lesser precedence is encountered.

Thi resultant is then ass ciated with the triple corresponding the op-

erator of higher precedence (rightmost operator in the case of equality).

Basically, then, triple formation proceeds in a leveling pr,)csss that

consists of combining variable "peaks" of a graph such as that given

in Figure XI-.3 into "valley" triples whose resultants are then treated

as variables and the process iterated. Parallelism is injected into

the procedure by concurrently associating each variable and resultant

with the triple in which it will ultimately be located.

The method of compiling MAD statements into triples outlined above

involves searches for items of lesser precedence both to the right and

left of a given item from a list such as (5). These searches can be

accomplished more easily if such a list is stored as a part-of an ex-

panded list defined as follows:

1. Let n symbols, such as those in the list (5), be

indexed 1, 2, . . , n

2. Let pbe the integer such that 2p < n + 2

2p. Construct a list of items indexed

Z, 3, 4. . . . , Zp, Zp + I, ZP + Z, .

ZP+ n, Zp +n+ I (6)

where n denotes the number of symbols from a

list such as (5) and ZP + i denoteI the index for

symbol i from a list such as (5). The other in-

dices of (6) denote dummy items that will be

_Z77-

- -I- -- ~.- -



APPENDIX XI

assigned a precedence defined below. These

dummy items will be of value in treeing the

searches for items to the left or right of a given

E item that are of lesser precedence. Figures XI-

4 and XI-5 present methods for the requisite

searches.

3. Using the precedences given in (7), or in some

similar but more comprehensive list, dente by

M(j) the precedence of the jth item of (6). For

2p+ ] 15 j - 2p + n, M(j) = M(2p + i), the pre-

cedence of the ith symbol from a list such as (7).

4. Let M(2p) = M(2p + n + 1) = -co. That is, drive

the endpoints of a graph such as that given in

Figure 4 to minus infinity.

5. For items of the list (8) indexed j, 2 _ j < 2P,

define precedence as follows:

a. If M(2j) and M(Zi + I are defined, let M(j) =
mrin M(2j), M(Zj + l)I

b. If only M(2j) is defined, let Mij) = M(2j)

C. If neither M(2j) or M(2j + 1) is defined, then
M(j) is undefined

Undefined items will not affect the search pro-

cedures specified in Figures 7 and 8.

Tablc XI-2 illustrates the compilation procedure described above.

The statement (3) in the list form (5) is used as an example.

04 An example of precedence determination for an expanded list such as

(6) is given in Table XI-3. Again the statement (3) is used as an ex-

anmple. The number of symbols in statrment (3), excluding parenthe-

aes, is n = 19, hence for p such that 2 p I < n & 2 , 2p, = S.

This accounts for the expanded list index running from 2 through 52

in Table XI-3.

-278-

Jim



APPENDIX XI

7

L. IS THE INDEX OF THE RIGHT-MOST SYMBOL 1-0 THE LEFT OF

SYMBOL j WITH LESS PRECEDENCE THAN ?HAT OF SYMBOL j

FOR ALL j'S, I < j< n

2P.+j -. L.

i(- i. LD ?0
2]

F I

21.j + L Lj

Figure X1-4 - Subroutine for Finding Lj

-2-4'Q-



APPENDIX X1

R iIS THE INDEX OF THE LEFT-MOST SYMBOL TO THE RIGHT OF

SYMBOLJ WITH LESS PRECEDENCE ThAN TMAT OF SYMBOL J,

FOR ALL j#S. I <j 'i

2~4) MIR

II

Figure X1-4 - Subroutine for Finding R.i

_280-

4zo

4UIS~q*~qmw :-Now



L
APPENDIX XI

TABLE XI-2 - EXAMPLE OF THE COMPILATION

PROCEDURE FOR STATEMENT (3)

Higher pre-
Index Symbol Precedence cedence item

j j of symbol j Lj Rj of Lj and Rj Triple

1 Z 3 0 2 2 Z

2 - 0 0 20 20 (-)

3 A 7 2 4 4 A

4 S 2 6 6 * (D

5 B 7 4 6 4 B

6 * 2 2 8 8 •D O

7 C 3 6 8 6 C

8 + 1 2 20 2 (+@
9 D 3 8 10 10 D

10 * 2 8 20 8 G)*@

11 E 11 10 12 12 E

12 * 10 10 14 14 @*@

13 F11 12 14 12 F

14 + 9 10 16 16 +

15 0 11 14 16 14 0

16 • 6 10 18 18

17 H 7 16 18 16 f

18 5 10 20 10

19 1 7 18 20 18 I

NOTE:- Lj[Rj] denote sthe rightmost [letmst3] symLol to th• left rrisht
of symbcl j having precedence lose than that of symbol j.

-281-



APPENDIX XI

TABLE XI-3 - EXAMPLE OF LIST EXPANSION AND

PRECEDENCE DETERMINATION FOR STATEMENT (3)

Statement

Z = (A + B)*L, + D*((E*F + G)*H + 1) (3)

Precedence table

Symbol Precedence

Variable 3 j Add 4 for every set of
parentheses enclosing a

+ symbol
+

i, - 0

n = 19, 2P- < n + 2- 2z mop= 5

i M(i) i M(i) i M (i)

S9 2 36 5

3 - O 20 1 37 7 B)

4 - 21 38 2 *

5 1 22 10 39 3 C

6 -00 23 9 40 1 +

7 24 6 41 3 D

8 -C 25 5 42 2 '

Q 2 26 -O 43 11 ((E

10 1 27 44 10 *

It 1 41 11 F

1 5 29 4 6 9

13 -w 30 47 11 G)

14 31 48 6 '

15 32 -n 49 H

I b -C 33 'A 50 5

o7 0 34 0 51 7 1)

18 35 7A 52. -



APPENDIX XI

Figures XI-4 and XI-5, respectively, present flow charts of search
procedures for finding L. and R., where L. R denotes the rightmost

[leftmost] symbol to the left right of symbol j having precedence less

than that of symbol j. These search procedures can Le executed con-

currently in approximately Z2n 2 n steps where n is the number of sym-

bols (less parentheses) from a statement such as (3).

4. CONCLUSIONS

In this appendix, three modifications of the parallel compilation algorithm

have been presented. -The tirot involved preliminary translation of re-

placement statements into reverse Polish notation; the second involved

innovatiens in the use of the parallh. processor progranmnming language;

the third specified a restructuring of the algorithm.

The first two modifications were easily programmable but did not result

in significant speed advantages. The rectructuring offered by the third

modificat.on appears to provide a maximal utilization o" parallelism in-

herent in the compilation process. The restructured compilation algorithm

has not yet been programmed for a parallel processor nor has it been sub-

Jected to a detailed review. it is recommended that further study of the

restructured parallel compilation algorithm be carried out.

5. LITST OF REFERENCES

1. Univ,-rsity *-f Michigan Computing Center, Michigan Algorithm De-
co4er. Ann Arbor. Mich., June 1963.

2. W,%ner. P. (editor): introduetiont Systim Proararnminm. Now York.
N.V"., Acadeniic Press, 19"4.

3. Arden, B., G&ller, B. , and Graharn, R. : "An Algoriotm for Trans-
lating Boolean Expressions. " Journal of the ACM, April 1962,

"483"

"m m m"- - •P- • • I-- [ ,, . . . . . .- .. ... ... . . .. . . . . "- "



i

APPENDIX XII - PROGRAMMING OF THE SEQUENTIAL

COMPILATION ALROGITHM FOR THE IBM 1090

1. INTRODUCTION

This work was performed under Contract AF30(602)-3550, Advanced Com-

",puter Organization Study. A sequential algorithm for compiling subsLitution

expressions was written so that a comparative analysis to a parallel ma-

chine could be made. T'he IBM 7090 computer was chosen as the sequential
acomputer on which to make the comparisons.

b
Reference was first made to a paper by Arden, Galler, and Graham. An

extensive analysis was made of the compilation of a general complex sub-

stitution expression, and further investigation led to a general derivation
I ~of a tCming equation for compiling simplified expressions.

The comparative analysis of sequential versus parallel compilation is made

in Appendix XIII.

2. DESCRIPTION OF ALGORITHM

a. General

In this IBM 7090 compile-, algorithm, reasonable assumptions have

been made as to what will be the format of :he iryut string or substi-
t-ation expressions. Due to the hierarchy of the operatori, the oper-
ands are considered as haviag a zero level ot hierarchy. The operators

~IBM Peference Nianual, 7090 Dta Prot~ssin&Syste-.n Poughiceep-t'ie, N, Y..
SInte -r1ni i Busin%ýss Machines Corporation. August 1961.

bAd B. W.; Gallerv, B. A. ; and Oraham. R. M, : An Algorithm for Trans-

lating Booi-.an Exprtssiong. Ann Arbor, Mich., uritersity, of iciTjn, C-

_3e__ t T
TT~



APPENDIX Xi-

Slisec below constitute an unalterable basic set whoee meaning (seman-

tic content) io used in the decomposition of expressions. Boolean ex-

pressions will not be considered here but it is easily seen that 'o in-

clude them one would merely extend the limits of the algorithm. All

arithnmetic operators except the exponential will be generated into an

object program in single precision arithmetic. The overall program

package will require input/output routines and an exponential subrou-

tine (EXP) that is available in the MAD compiler. The symbol "-" is

used in statements to indicate both the unary (one operand) and the bi-

nary (two operands) onerator; the context h,.dicates which is intended.

Certain arithmet" : operations mrust be cormpiled first in order to exe-

cute the object programn correctly. It is for this reason that a certain

level of hierarchy is assigned tu each of the input string of items. Ln

this algorithm, the chosen hierarchy (or precedence) is as shown in

Table XN- I.

TABLE XII- 1 - HIERARCHY OF INPUT ITEMS

itemn Definition Precedence

ABS. Absolute Value 12

-u Unary minus 11 Operators

Exponentiation 10

Multiplication

/ Division 8

Binary minus
+ Plus Operaturs

- I Skbs titution

Left parenthesis 4

$)Right parenthesis 3

Left terminator

"Right terminator .1
V Constant or vart-

4 able 2 Op-:rand

-Z86-

- V.



I
APPENDIX XII

If the input items used in an expression are compiled in accordance

with this hierarchy, there will result an object program in 7090 code

that when executed will accomplish the desired arithmetic operations.

Throug1 ,ut the discussion, the following symbols are used:

PREC(5j) = Precedence of current operator

PREC(5.I) = Piecedence of previous operator

SO = Current referenced input string item

L a = Current referenced intermediate string item

S= Input string index

a = Intermediate string index

R. = Current triple resultant pointer
I

Mit = First generated instruction of a triple

Mi 2 = Second generated instruction of a triple

M = Third generated instruction of a triple

Mi 4 = Fourth generated instruction of a triple

The compiler discussed here involves an input paF. that will assign

tht.- constanti./,'wiablc machine locations and tK,ý correct hierarchy to

the input string. Once the input string 's 4n this form the various

iterns are placed on a list fSLIST). Thie major function of the algo-

rithrn involves a %ingle scannaii-! A the expression from right to loft

(up the SLIST) and retaining cýper-nds, operations, relations, etc.

(,n an intermediate list I %LLIST) unAii an operation or relation (5)

occurs wkhich is c.' lo - r precedence thvn the ;mmediately pr•cedint

up•.-'ation en the l t (t ( 1 )

,ihenr such. ,a operation or relation as 8t os tn'ount.tered, IS t• l co-

ed ;xt--,-pt for the case 01 eXponentiation tic nopilation coniists

ni roating obct coding of three instructions (I'A, Ms2. and M.i).

"-2g1 .-



APPENDIX XU_

The three instructions created for a + b are M = LA a, M 2

FAD b, and M = STOR., where R. is thlz current location of the re-

sult of performing the oper•tivn a + b which will be called a triple for

this discuss;'n.

_b. Input String Discussion

The input routine must be capable of reading a statement into the 7090

and assigning relative addresses to the various constants and variables

(that is, count the different operands). If a variable or constant (op-

erand) is detected, the sign bit of the machine word referencing its

location (bits 21 to 35)'is made one (bit 0) and the decrement (bits 3-

17) is zero. An operand format is sketched below.

(ZERO)d RELATIVE LOCATION

S 1. 2, 3 17 21 15

To execute the various arithmetic operations in the proper sequence,

a certain level of hierarchy is assigned to each operator :see Page 284).

In the case of operators, only the hierarchy mentioned on Page 284 is

necessary to generate the correct cbject code and it must be contained

in the decrement (bits 3 to 17) field of each item word. An operator

format is sketched below.

0o (ZERO)
S 1 2. 3 17 21 36

For example, should there be a complex expression such as

Z - (A*B + C*D) * (EtF + .ABS.!) + (JIK - L/M)/(-P + Q*R)

the input routine would be expected to produce the array shown in Fig-

ure XII-l (see Appendixes I and I11).

c. Input Data Discussion

After the object program has been generated, the DATIN subroutine

-288-



APPENDLX XIU

INPUT STRING CONSTANT, VARIABLE. AND
(OCTAL) RESULTANT POOL

S123 DECREMENT 17 21 ADDRESS S5 RE[SERVED FOR - - --

SLiST LEFT TERMINATOR POOL. 00000 0 00000 (ZERO)

4 o0oo0 0 0c0o0 Z - Z

0 00005 0 - 00000 P' A

0 00004 0 00000 a A

4 0Z000 0 00002 A C

0 00011 0 00000 0 D

4 00000 0 00003 a E

0 00006 0 00000 + F

4 00000 0 00004 C I

0 00011 0 0000C * J

4 00000 0 00005 0 K

0 00003 0 00000 I / L

0 00011 0 00000 m /

0 00004 0 00000 P
4 00000O 0 O00006 E /
o0 00013 0 00000 R

4 00000 r 00007 F

0 00006 0 00000 +

0 00014 0 00000 ASS.

4 00000 0 00010

0 00003 0 0000 0

0 00006 0 0000 +

0 00004 0 0o 4 Il
4 00000 0 0o0l I LOCATIONS ASSIGNED DURING TME

0 0013 0 00000 INPUT ROUTINE AND FILLED WITH

4 - 00000 0 00012 K FLOATING POINT VALUES MY THE

0 00007 0 00W DATIN ROUTINE

-! J4 0000 Of0,011 L

0 00010 0 00000
4 00000 a 0004 M

0 0000 0 00000

0 o0000 0 00000 I

C 00007 0 00000

4 00000 - 0 0o

0 0O0OW 0 00000

A 00000 0 000m0

0 00011 0 0 1030 1

Figare XU- - Furmat of an Input String of Itema

- - -.- •.-

-eA



I
APPENDIX XII

must be capable of storing floating point values in the memory loca-

tions selected by the INPUT subroutine. These values will start at

POOL+l, etc. The first location POOL is zero. If the input data are

in integer form, provision must be made to convert it to floating point

numbers.

d. Flow Diagram General. Description

IIn addition to the terminology used in the general discussion of this

section, the following additional symbology pertains to the flow dia-

grams:

.--@means "is transferred to"

R. + 1-R. means "-R. is increased by one"
111

The flow diagram in Figure XII-2 is by no means complete from a sys-

tems standpoint as mentioned above. The operational system will re-

quire input/output and, if desired, object program listing routines.

e. Subroutine Descriptions

(1) Absolute Value

The absolute value may be detected by (1) the initial scan, or (2)

if preceeded by T-triple. If a twelve is detected in the decremcnt

field of an item on the int -t string (SLIST) during the initial scan,

the subroutine SCOPEM + 2 is entered. This subroutine will pro-

duce three instructions: (1) CLA POOL, which makes the AC reg-

ister ,qual to zero when executed; (2) FAM 1,La _P which adds to

the AC register the magnitude of the contents of the previous item

on the L list, providing it is not an operator: and (3) STO Ri,

,hich st,rcs t0he final result of tht, opt-ration, . ABS. La I'

The iocat.on of thhe result after executing these instructions is put

on the L h it to) keep acc-ount (,• the intermediate steps. The result

point, r is increascd by one and the- program remturns to the start to

_V M



A

STARTr

(AC)

S -=?

VARIABLE __________________________

CONSTANTS *.tw TE( OTHERS

SSTARTS - Is PREC8 NO -R f-4 CASE( CS

PAEC LIST AND S PE N,

N O -R+! I 
4 

a IG1

a+ "T L a- a- A

I -o YE 
YEaa- a+ I

START STO

+L - L. a-3 
CmA L *l

S R L -. - TEMP STORE

Rf a-3 
OP- a_ 4 YES

a- a + STO- R , STO RE

i + - A -L I M i l

w2 a -1 i2

a -2 
R. -0 L 

L

, AC 
R ÷ + I ,

f a3 CLA-2TM aTR:

8. . ..AC.

A_
*• , " ' •~~ -_ • l ..... . - -, , . . . . _,



A APPENDIX XII

SSTART

"S ?

L.RT

-;: PRi} OR AN APERSS -

R. L .,R. 2IA3-"L

SNO _ ?

Sa- I a 1ý aE L.O O- ýP_ 1 + Mi

- I CM. - L M i2

A •- Lv Mi TSX I EXP M

ST R !S P OR i3,

c ýs No.S - .L I STQ " R. " M i4 C .A - ZERO "• Mi

< PRa. a i2

STO -R. M.1 R. La FAM - 3S "1 M.
- "* 1RE a- I 2 •- 1 S .

C A-LMi t i+1 Rr"- 3

OP - tR M 2 
3R.

a-3

R. +T R START

a -2 L.

8 -. AC

Figure XU-Z - Compiler General Flow Diagr-rn

Z 91 -

__ 
B

I - ~ _ _ _ _ _ - ~ -~ I .- 1 - -- =



A PPENDIX XII

examine the next item. If the absolute value is detected while

examining an T-triple, then the tree mentioned instructions are

formed before the T-triple instructions.

(2) Unary/Binary Minus

If a seven is detected in the decrement field of an item on the in-

put string (SLIST) during the initial scan, the subroutine MINUS

is entered. This subroutine will check the next item on the list

(S .1) to see if it is an operator. If the next item (S31 ) is not an

operator, then the minus operation is binary and program control

goes to the OTHERS subroutine.

If the next item (Sf 3 l) is an operator, then the minus is a unary

operation and three instructions are formed: (1) CLA POOL,

which makes the contents of the AC register equal to zero once

this instruction is executed at object time; (2) FSB L _l, which

will subtract from zero (AC register) the contents of L_ aI; and

(3) STO R,, which will store the result of the unary operation in

an intermediate location.

Then a and 03 are set to examine the next input item and compiier

control returns to START.

(3) Exponentiation

"f an eleven is dettected in the decrý.ment field of an item on the

input string (SLIST) during the initial scan, the POWERS subrou-

tine is entered. This subroutine check3 the next operator (S 1)
and if it ib an absolu~t vAilue operator performs a compilation of

an absolute value operation first.

After the absoltite value compilation or if SJ, I i# not an absolute

value operator, four in3trurttons are generated for EXP subrou-
:nc ,'alling srq''Tl, ttes:

1. LDQ SM 1 • the value to be raised to a
power to placed in the MQ register

-2 3.-



APPENDIX XII

2. CLA ."the exponent to raise a value

to a power is placed in the AC register

S3. TSX I EXP - transfer and set index I to the

current object program address and go to
subroutine EXP

4. STQ RPi - store the result of EXP in an in-

termediate location.

Then a and I are set to examine the next item on the S list and

compiler control returns to START.

(4) Parentheses

Once the operator "(" is detected (a four in the decrement field),
compiler control stays in the LFTPRN loop until all operations

within the parenthesis have been compiled. The loop stop code

is of course ")" (a three in the decrement field), and at this time

compiler control goes to RTPRN and sets a and 0 to examine the

next input Item. The final resultant within the parenthesis (RP)

is moved up one position on the L list by the RTPRN routine to

completely eliminate the parenthesis. For an illustration of this

case, see Page 316.

(5) Terminators

Once the - operator is detected (a two in the decrement field),

compiler control stays in the TERM loop until all the operations

of the expression have been compiled. The Loop stop code for

this routine is i (a one in the decrerment field). Once the condi-

tion R 4 exists and there are no more expressions to be corn-

piled, control ,oes to 147t and/or execute the program. For an
illustration of this case, see Page 316.

(6) Others

The OTHERS subroutine is the most general subroutine in the

-294-

ONO- AW~



L

APPENDIX XII

compiler and effectively the input string could be defined in such

a manner that OTHERS would be the only subroutine necessary

for the compiler. In the next section, the point is brought out as

to how vxpressions could be written that require extensive use of

the OTHERS routine. This subroutine first will compare the pre-

cedence of the current operator with the precedence of the pre-

vious operator; that is, PREC(8i) < PREC(j. I). If the current

operator precedence is less than the previous operator prece-

dence, a set of object code instructions using the previous oper-

ator is formed. If precedence of the current operator is not less

than the precedence of the previous operator, it is added to the

intermediate (L) list and the next item on the 3 list is examined.

3. A SIMPLIFIED APPROACH TO COMPILING SUBSTITUTION EXPRESSIONS

a. General

In writing substitution statements, many compilers try to reduce the

complexity of compilation by placing restrictions on the programmer.

Sometimes, these restrictions are a set of programming rules that

will discourage the use of parentheses or encourage the writing of

unary operations in a prescribed manner. By using the expression

on Page 288, the programmer could have conceivably written:

V = A*B 4 C*D (1)

W = E TF + .ABS. I (Z)

X- JK-L/M (3)

Y a Q*R- P (4)

Z a V*W + X/Y (5)

Where d is a location containing zero. It is noted that each simplified

expression contains an odd number of items. As a general rule. when

writing expressions in the above, simplified manner, the compilation
.4

1*

'.. _ _._. _..___..

___________________NOW



APPENDIX XII

time 'is thought t5 be reduced considerably. Such is not the case when

using this algorithm for compilation. The reason for this is due to

the shorter loops (see Page 290) for

Unary minus - 44 cycles

T(POWERS) - 45 cycles

Normal absolute value - 37 cycles

whereas the general OTHERS loop requires 50 cycles. The OTHERS

routine as discussed in greater detail on Page 294 is used for a general

timing equation derivation later in thiz section.

b. Compilation of Complex Expressions

A complete simulation of the compilation of the expression given on

Page 288 is illustrated in great detail beginning on Page 316. The

overall compilation time for the complex expression is found to be

1270 cycles or

T(total,,= 1270(, . 18 a) uec

2.3686 insec.

The reason for such detail is to give the reader an insight into what is

involved in order to do a co-npplation.

c. D'orivation of a Genera! Timning Equation fur Comnpiling Simplified Ex-
_U .s s 10 1.,_

Froin the siniplifiec' expr,..- s :.i s on Page 2`15 and the flow diagratii on

Pa'e 2'7, .t •an he not.ed ti.at there are in - 1),2 operators, (n - "

operands, and (n - 1) "2 triples, where n is the number of iterns in he

texpression. it is aven fronm the general tirning eq,,ations beginning on

Page lh that the• onuiil.r r ,,s I I ,y les to t• knowledge and

transft'r an o•)erand froni tliv xnput s~t ,n' to the intenimed iate list so

the time (in c v-',,es) to zransf,.r opracis x s

tue 70 10 1- x xn. 1 2. 18 o s c per k,, r .

-'O.)



APPENDIX XII ______

PREC 80 NO ADD ITEPA TO
INTERMEDIATE * KTR

3CYCL ST6YCE

SECOND 6CCYCES

OINSTERUCTON 9 CYCLES

SECON16 CYCLES

INTUTO
F~~gurc~U XI- A rthmeLTcOer. GnrlFoDag

OINEPION CYLE

I-w L I



APPENDIX XU

(operands) 1 r (

Using the data from the timing equations, it follows that there is gen-

orally

t• - son1 7)t(tripl) 50

cycles per simplified expression.

The timing equations show that 15 cycles per operator is required or

t 15(- - 1) 8
t(operators) = . (8)

Using the three equations, the total time for each expression is

t(total) t(operands) + t(triples) + t(operators)

1!qN + 1) 50(N - 1) 15(N - 1)
= 2 L+ 2 . +' = 38N - 27 cycles (9)

If N = 9 as in the simplified expressions 1, 2, 3, or 5 on Page 295,

then

t(total)(1) = 38(9) - 27 = 315 cycles

In simplified expression (4) on Page 293, N = 7 and

t(total)(4 ) = 38(7) - 27 = 239 cycles

so the overall time required to compile the simplified expressions is:

T(total) " t(total)(1) + t (tota)(2) + t(total)(3) + t(total)(4) t t(total)(5)

a '015 + 315 4.315 + 239 +315 a 1499 cycles

4. CHARTS. ASSEMBLY LISTING, AND TIMING EQUATIONS

The compiler flow charts, an assembly listing of a compiler, the general
timing aquations, and a simulation of a compilation are presented on the

following pages.

-gs

-298-

OIlo



APPENDIX XII

A

BEGIN: START:

INPUT ON.. PUT THE RIGHT
STATEMENT MOST OPERATOR/AND0 STORE OPERAND IN AC RIG
IN S LIST AC

SET THE NeXT;

RESULTANT
I PUT THEPOINTER PUT S INDEX

4 PRECEDANCK AU
(DECRIMENT) TO POINT TO C

SET THE INTO X4 NEXTITEM

OBJECT PRECx) X
PR OGRAM 4
POINTER 4

" L • ![mmm,, m, m~m,,mm VAR~CON :

SET THE L IADD TO "L
LIST POINTER :TLIST"),YO P J LIST: It THI Yes
TO AN OPERAND? VARIANLEI OR
I 4 -4- a (JUMP LI M CONS?-~~ 

P.m Lai| OI

PUT A RIGHT a+ I a

IN THE L-L.S I(1

TERMINATOR N
IN THE S-LISTO

0

PUT ALEFT

COUNMINATOR

CPARCR -

Figure XII-4 - Compiler Flow Chart

-299-

___ V



APPENDIX XI__

R• Y

LFTPRM 'T' 4

3
RTPRN:

(R. CASE PUT

"E R O 2 C O M P A R E -> T H E " TR IP LE "

8. -. TEMP LIST -2 INDEX X2 BY ONE

X2(_)-. T -MP. i a-2 cL-I a 2

MPTR . X2 2
6

MANUFACTURE
AN INSTRUCTION
CLALa-1 M12 6

MANUFACTURE

MA JOR
INSTRUCTION

OP- L a * I.
z-3 2 16

R. R AC

MA IUFAC TURE

STO - R.
I

INSTRUCTION
* M

3 1
SUBTRACT 3 2A
FROM MPNR RNT -

STORE CPNTR 2 a
X2 Mprp .2~

F "4 Figure X!I-4 - Compilt, r Flow C'hart (C'ontinued)

S-•- (10



APPENDIX XII

OTHERS: OTHERS'

3

AC To. FOR >

STORE AC

IN TEMP
PREC < PREC.

-. TEMP

X2(/1) " TEMP X

MPTR X2

1 6
MANUFACTURE

AN INSTRUCTION

CLA -L - M.

OR

LDQ-L - L .

MANUFACTORE Ri" AC SUST RACT 3 X

THE MAJORR, I-. FROM MPmTR RPIN

INSTRUCTION Ta-30HN 1RPNTR

OP~- -~ L -AUATR

a -, , 2 STO.-Ri Mi~ ]X2 MPTR

8 4

I T-CRV

Figure XlI-4 -Compiler Flow Chart (Continued)

-301.



I APPENDIX XIII
T TERM: " 2-" 2

33

2"VERROR AC WITH 5. OR > EXECUTE)
2TO PRECEDENCE

STORE AC IN TEMP

TEMP

X2(jg) " TEMP X

MPTR - X2

6

MANUFACTURE
AN INSTRUCTION

CLA - L " M.a-- 1 II
OR

LDOL - M.

MANUFACURE
THE MAJOR A RMMT PT
INSTRUCTIONa -0"TE PR
OPL-L M. -ANUFACTUREE

a

it Figure XUI-4 - Compiler Flow Chart (Conitinued)

-302-



APPENDIX XII

MMINUS 7,, .

INUS 

" 

I

MINU "OIRSRS

SC )COPE Mu

P. AC
U

(DECREMENT

OF AC)

-a X4

"-TEMFX"

MPTR I X2

PRODUCE
THE FIRST

INSTRUC.TION

CLA - POOL

M&NUFACTURE

SECOND

INSTRUCTION

FSB 8

RETA.N RESULT L MA NUF CT R MPTR 3' IWI•
0,OI IE• •a Nt I j INSTR UCTION

'. .I 1 4 1 $TO R

Figure XII-4 - Compiler Flo~w Chart (Continued)

-303-



I
APPENDIX XII

I

POWF.RS

AUFORM FORM SECON.

IS .JINSTRUCTION FORM FIRST
•RRO /ANASOLTE -AM - S. - M. INSTRUCTION

ANy ASoITO/ xCLA POOL -. M

10 4
5

FORM THIRD MPTR - 3 -1 MPTR

INSTRUCTION P3 -X2

STO R, -I M RPNTR - S

"• 110

RPNTR -1

. RPNTR

__5 6'"

FORM SECONCý

FORM THE FiPS" t3 TEMPX INSi-rIUCTiON
INSTRUCTION MPTR X2 LOAL ,L

LOO -s LOQ S m '. " ,
/3 -i /3- ¶ ,EXPCNENT

1

4 6

A OFO R M T H I R DR (1N T L f a 4 .

"TSUBROUTINCALL !NSTRUCTiON Q PNTR I t •RINTR

"SUBROUTINE ," • m /

4 IO 4,,

Figure XN-4 - Compiler Flow Chart (Continued)

S-3U4-



6

APPENDIX XII

ASSEMBLY LISTING OF COMPILER

S

OP ADDRESS, TAG, DECREMENT COMMENTS

BFGtN CLA RST 2 SET 00010

STO RPNTR 2 R "'ULT POINTER 00020

LAC IST, I 2 SET O1JECT 00030

SXA MPTR 2 PROGRAM POINTER 00040

SET TSX INPUT, I I INPUT ONE STATEMENT 00050

AXC I. I I I (COMPLEMENT) - - XI 00060

CLA RTERM 2 00070

STO LLIST 2 12 4 L0 00060

CiA LTERM 000"

STO SLIST 2 -SO 00300

LAC CHAR, 2 2 CHAR COUNT (COMPLEMENT) - 00110

START CLA SLIST, 2 24 + 1 00120

PDC j ,4 1 JLIST PREC(X) (COMPLZMENT) - X4 00130

TRA JLIST, 4 1 5 00140

JLIST TRA VARCON I VARIABLE OR CONSTANT 00150

T'.'.A VARCON I 4 I -U10 (DECREMENT) 00160

TRA TERM I -Z11() (DECREMENT) 00170

TRA VARCON 1= 3)10 (DECREMENT) 00160

TWA LFTPRN 1 4110 (DECREMENT) 001"

TRA OTHERS I S) 10 (DECREMENT) 00200

TRA OTHERS I + 6)1, (DECREMENT) 00210

TRA MaINS I - ?)i0 (DECREMENT) 30220

TRA OTHERS I / 
8110 (DECREMENT) 00230

TRA OTHERS 1 9)10 (DECREMENT) 00240

TRA POWERS 1 1 11)10 -4i 1 10110 002so

TRA ScOPEM+Z I ABS. 2 12)10 (DECREMENT) 00160

VARCON STO LLIST. 1 2 S1 -, La 00270

TXI NEXT, 1. -I Z)6 a + -a 00280

NEXT TX, START. 2, I 2 3-1I 3 002%

L'f"PRN CAS LLIST -2, I 3 PREC(6.) - PREC(8.1 00100

TRA RTPRN 1 00310

HTR BEGIN z 00321)

STO TEMP Z 85 -a TEMP 00330

CLA LLIST -2. 1 2 A AC 00340

PDC 0. 4 1 II 0G)0

SXA TEMPX. 2 2 XZ - TEMPX 00160

LXA MPTR, A z MPTR - ":'2 00370

CLA DUMMYA, 4 2 00190

ADM LLIST -I. I Z MANUFACTURE.AN 00400

SrO 0. 2 z tNSTRUCrITON 00430

CIA DUMUYB. 4 2 004;"

ADS C* LIST -1. 1 1 6 MAIN INSrRUC'TION 004 0

STO 1. 2 2 00410

CLA .PNTR JL 00441

STO LL46T C.4 I 00
SsP I MAKE(ACI PL.US 00460

ADD rKIMMYR, 4 " 6 0470

TO $ i•, O •6-'M l C410

10% IP-Imp-



APPENDIX XII

ASSEMBLY LISTING OF COMPILER (Continued)

OP #.VDRZKU TAG, DECRR.MN T COMMXNT.JS
TXQ *+I. a, 3 2 M M 00490
SXA MPT& 3 z XZ - MPTR 00s00
LXA TEMP)C, I az-c oosio
CLA 1RP?4Tf a 00530
SUB ON1r a 16 *Ri< , (Rj 1, 00530
IT(O ApwTR OO0040

CLA TEMP I 005 so
TW LrTPRN. 1. 1 3 *.. 00560

RTPRN CIA LUST -1. 1 ZI IRZ) CASE 00570
M2 LUST -3. 1 00b580s

TVl NExt, 1. 1 00590os

OTHERS CAS LUST -2. 1 3 00600
TRA V'APCON I AC > Y 00 A00 00610
TRA VARCON I AC - Y TO UIST 00620
STO TEMP 2 a~ TEMP 00630
C..A LUST -2, 1Z 00640
POC 0. 4 1 9 AC (DECREMENT COMPLEMENT) X4 00660
SXA TEMPX. 2 z XZI() - TEMPIT 00670
LEA MPTR. Z 2 J PTE- XZ 00680
CLA DUMMTA. 4 a ooeoo
ADM LUST' - 1. 1 a j MANUFACTURE AN -'700
STO 0,.2 INSTRUCTION 0071t
CLA DUMMYS. 4 z WAIN 00720
A064 LUST -S. I z IN4STRUCTIONJ 00730

M1 1. a2 00740
CLA RPNTR ' 14 R,-L._ 007%0
S'rO LUST-a 00760
SSP 3 z MAKE AC- 00710
ADD DUMMYR. 4 z STO - Rt .. MO 00780
570 Z. 2 1 007f)0

T~t1 0+1. 2. *3 z El-) -. )a000
SXA MP1Rf. z z vai0
LXA TEMW X. 9 1 00620
CIA RP"4TR 1 008)0
SUB ONX 9 1 R- 00340
STO am& 9 008so
CLA TOMP 'i AC 0046
TX) OTHIERS. I. a 0 -. 00470

tERM CAS LLIS? -z. 1 3 TVEST PILLC 00GMo
TRA ExEVuT I USIT AWDOR MCUTCJ? iW14 "9
HTR *OIN I ERAOR I ý 5 O
ST s TEMV I :c-.Ep 00010
CLA L UST' -I1

roC 6

5XA TguPE I I Is (40 - TCUPX
LXA MPVNAI I MTR - X1
CIA OUMMVA 4
ADM L.LMY .3 £ ?A.NACURE el
$TO 63

-306-



APPENDIX XII

ASSEMBLY LISTING OF COMPILER (Continuedl

OP ADDRESS. TAG. PECAEMLENT COMWI3T841

CLA DtIIMYS, A2 00910
ADM LUIST -1, 1 1 jO STORE FIXAL RESULT 1IN 03000
$TO 111 2 SUDSCRIPTED VARIABLE 01010
CLA ftPWTR 1 *L.. 01020
$TO LIST. -3200300
SIP 3 2 MAKE AC. 03040
AIX) DUMM YR., I j SAVE NEXT Rt LO14CATION 030s0
ITO 1. 2 1 FOR mzt NEXT fXMRESON 01040
TVl 0+.12. -3 a a- -G3aX @0700
SXA 3.priR. 2 2 X2 - MPTR 01000
LEA TEMPX. 1 0 -X 010"0
CLA RPNTR 26 oil"30
subi ONE a tNCRrASE R. POgNTEE 01110
M.0( RPETR 201120

CIA TEMF a A~-C 01130
TX I TEaM. 1,2 2 0*-2- 01340

MINS CLA SLIB? -3.2 A2 -AC @IIsC
TPL ICOPEM 2j 4F( OPERAND 9 (*1 OPEPATOR 01340
CIA SIlST, A a15 So -AC 03370
TKA OTHERS Ii *life

SCOPEM CIA UNMIN I PMEC. AC 0il"

POC 0. 4 1 7 DEC. -,,X4 01200

LEA MPT~t. 2 1 MPTR - XI @1220
CLA CLEA.R 214 CLA-POOL -MiiL 01333
$TO 4.2 1a 01240
CIA DgMJAYD. 4 ISO325
ADM LL1ST -1. 1j 1133 r L, 1.- m, 0,,140
MTO 1. 2 21 03270
CIA R PhTR a 4 R-AC 81260
510 LLMT-1. 1 R,-*, oil"
SSp' I a 0300
ADD DUidNM. 4 a 6 $T -1 *R, -M 13  01330

TXI *+3 1. J.2 01330
:EA MPTR. I 2 XI - APTR 0elm
LEA TtMPX. A I 03 350
Cl~k IPSTR 2 is 03l"
ItS ONE a viNcASERN PamWTEA 01371
STO RPITR el6334
TXI ST.ART. A. I) 61M034

lOWERS CIA 56JO -4, 1 a "Jo I -AC 01400
CAS A95VAI. 3 TEN Of%" 03430
KTu MA(N Z RAkM MAI.? 01too
TO-A AbFolsm 4 3143
CI.A C'UM)4A. 4 2 40344
ADM SLAB? -1. A 41 Ole0
JIXA T EMA OX 2j X~a -TZIPN 03400
LEA WPR. a:10 UPTA - Its3070
570 4. a LLQ SW3 bSd3 03406



A'PPENDIX X31_ _ __ _ _

ASSEMBLY LISTRIfG OFCOMPILER (Continued)

UP ADDRESS, TAG, Dr.CREMFNT COMMEWTS

CL.A 2UMB 014"

ADM LUS -116 CLA -. LaI-mi 0 1 soc
STO 1. 2 21 1 01510

CLA TRANSX 2 1 T3X -EXP-M~ 01520sz
STC. 2,2z 2~ 01530

CLA RPNTR 2 a 01!,~40

510 LIST -'. 1 2 R - L a 0 1 ss
SS? I MAKE- 01560
ADD DUMMYR. 4 22 16 STO - R. 0 1570
STO 3,2a 2~ 01580

TX! *4..I.2 4 a 01590
SXA 161PT R. 2 2 XZ - WPNTR 01600
L)..- T EMX, 2 z ~ X2 01610

CL.A RPNTP. 2 401620

ý.-JB ONE 2 INCREASE R 1 POIN-ER 01630
S"0 RPNa'R 2 01640

TX!: STAPT, 2. z 2 J3 -- z 01650
ABF.PM 1; CLA OiJM?.YB. +12 2 101660

ADM SLIST -1, Z 2 FAM - s- I. 011,70

1.XA TMPX, 7 2 110 -101690
SXA TMPTR, Z z 01690

STO 1. 2 J 01700
cLA CLEAR i4 CLA -POOL - M i01710

STO 4. 2 21 0 1720

P OJMMYR. +12 2 01730

KPNTR -1 16 STO - P -M 3  01740
2+, 2. z 2 0175G

TXI *-I. Z -3 z CI-60

SXk IIIPT R. 2 01770

LXA I Em.'. 2x 2 a 0  111160
C LA RPNTR a (. 9

$10 5S.!'VT -Z. Z2 2- ii

sun ONE 01310

S'IO RPINT R o 0182
TXI POW ERS '4. 2. 1 2 OI R10

EXECUT TSX DAkT.AN, I ExEcu~r -. 1( 01440

T RA MUIST 01440

MD3 ss -, o 33JECC PROGRAM

RS 0CT -104 Rr,.'.%TiVE DISPLACEMEN: 1.

RPNTR pkvq rS+kt LTPOINTR 066

1STr ~ 4T SE2T FOR MPNTI' 013"0

MFTR Ass5 08JECT PRkOGRAM POINTERt 01I96

R*&R#A4 t. CT bý %.)P. 0 1 R1'ý,MT TFRMUJATOF 61110

QVUM Y A NO' Q '(k.',. ARIAIIlE, V'f CONSTANI 011,11

?40P *Z'0. .401112

NO p "'OL 1

.40;$ P('X) L 4,

-308-

l' ~



APPENDIX Xr

ASSEMBLY LITING OF COM MLER (Continued)

S

OP ADDRESS, TAG, DECREMENT COMMENTS

CLA POOL + POOL + Le-1 01917
CLA POOL 01918
CLA POOL 01919

LDQ POOL 01920
CLA POOL 01930

u
LOQ POOL t 01940

CLA POOL ABS. 019s0
DUMMYB NOP POOL VARIABLE/CONSTANT 01960

HIOP POOL 01970

111O0 POOL I 01960
NOP POOL 01990

NOP POOL ( 02000

STO POOL 02010
FAD POOL + POOL L0 -3  02020

TSB POOL 02030
FPP POOL / 02040
FMP POOL 02050

FSB POOL 02060
u

LDA POOL t 02070
FAM POOL ARS. 02080

DUMMYR NOP POOL VARIABLE/CONSTANT 020 -0
NOP POOL -4 02100
NOP POOL l021z10
NOP POOL 02120

NOP POOL ( 02130

NOP POo:. PCOL 100(Ri) 02140

STO POOL + 02190
STO POOL 02160
STO POOL 02170

STO POOL * 02180
FTC POOL "02!C

STO PUOL I 02200
STO POOL ABS. 02210

I LIS1 BiS 1#• INTERMEDIATE STORAGE 0222')
TMOP. d. l LLFT TERMINATOR OPERATOR 0I2 c

SLIST eIss l| INPUT STkNa•C 02 4U

k HAR lSS CHARACTER COUNT 0.25')
TENAP liSS TEIPORARY STORAA," :i60
TEMPX PS5 INDEX STORAGE.' 04'!L7
ONE OCT I 5ýIipc

UNIN.EI - of, l0 UNARY O•i•PATOR 0)22A)
C1 EARI LA POOL 6ti 10i

POOL zoo ZCRO '1 ti0
IaS.N .00 CONSTANT/ VAMRABL ESR EKULTS q:140

ABSVAL ,411 OP 0 It 02)60

tRA•SX TSX FEP ' TRAM FCA TO SUSROUTINZ 0as 0
INPUT A1ýM INPUT ONE STAT MKNT ROU IN Q0E

A IAIN RVF RAVA DATA KO0 rtNr 02)T0
IR A . J GO TO L' I fMAIN PROGRAM, 02)S

-309-



APPENDIX XXI

GENERAL TIMING EQUATIONS

.: Initializatim•

Time to set the triple resultant pointer and object program pointer:

BEGIN0 0 0 10 - BEGIN00040 = 8 cycles

Time to set the program to compile one expression:

SET 0 0 0 5 0 - SET 00110 - 12 cycles

Time to acknowledge one item:

START 0 0 12 0 - JLUST 0 0 15 0 _00260 = 5 cycles

Variable or Constant

"rime to transfer a variable or constant from the SLIST to the LLIST:

VARCON - NEXT0 = 6 cycles00270 00290

Time to discover PREC("(") < PREC(8j. 1 )

Left Parenthesis

LFTPRN0030C = 3 cycles

Time to manufacture first instruction:

4 LFTPRN0 0 3 3 0 - LFTPRN00 4 0 0  15 cycles

Time to manufacture second instruction:

LFTPRNOU410 - LFTPRN00430 6 cycles

A0043



APPENDIX XII

Time to STORE resultant pointer in LLIST -3

LFTPRN0 0 4 4 0 - LFTPRN0 0 4 5 0 = 4 cycles

Time to manufacture third instruction:

LFTFRN 00460 - LFTPRN00480 = 6 cycles

Time to increase Ri pointer by one, object program counter by three, and

decrement a by twor

LFTPRN 0 04 9 0 - IFTPRN00 5 6 0 = 16 cycles

Time to form a triple set of instructions:

ILFTPRN00 3 0 0 - LFTPRN 00 5 6 0 = 50 cycles

Time to put Ri at L 01 back to L 02 for (Ri) case

RTPRN0 0 5 7 0 - RTPRN0 0 5 9 0 = 11 cycles

Others

Time to discover PREC(8 ) < PREC( I):

OTHERS0 0 6 0 0 = 3 cycles if yes

4 cycles if no

Time to manufacture the first instruction:

OTHERS0 0 6 30 - OTHERS 0 0 7 10 s 15 cycles

T7ime to nmanufacture the second instruction:

OTHERS00 72 0 - OTHERS 0 0 740- 6 cycles

Time to store resultant pointer in LLIST -3:

OTHERS0 0 75 0 - OTHERS00 76 0  4 cycles

-N311-



S APPENDIX XII

Time to inanufacture the third instruction:

OTHERS0 0 7 7 0 - OTHERS = 6 cycles

Time to ir.:rease R, pointer by one, object program pointer by three, and

decrement a by two

OTHERS 0 0 8 0 0 - OTHERS0 0 8 7 0 = 16 cycles

Time to form a triple set cf instructions

-OTHERS0 0 6 0 0 - OTHERS0 0 8 7 0 = 50 cycles

Terminator

Time to test PREC( ) < PREC(S.):

TERM0 0 8 8 0 = 3 cycles

Time to manufacture the first instruction:

TERM0 0 9 10 - TERM0 0 9 8 0 = 15 cycles

Time to manufacture the second instruction:

TERM00 9 9 0 - TERM 0 1 0 10  6 cycles

Time to put the R pointer into LLIST -3:

TERM01020 TERMI 0 10 30  4 cycles

'-Ame to manufacture the third instruction:

TERM010 4 0 - TERM 0 1 0 6 0  6 cycles

Time to incr',,ase R. pointer by one. object p'ogzam pointer by three, and

decrement a by two:

TERM0 1070 - TERM 01 1 4 0 -b cycles

W

312-

I/



APPENDIX XII

Time to form a triple set of instructions:.

XTERM0 0 8 8 0 - TERM0 1 1 4 0  50 cycles

Minus

Time to discover binary minus

MINUS 0 1 1 5 0 - MINUS 0 1 1 8 0 = 7 cycles

Time to form binary minus triple set of instructions:

MINUS 0 1 1 5 0 - OTHERS0 0 8 7 0 = 50 7 = 57 cycles

Time to discover unary minus

MINUS 0 1 15 0 - MINUS 0 1 16 0 = 4 cycles

Time to manufacture the first instruction:

SCOPEM01 I9 0 - SCOPEM0 i 4 0  I I cycles

Time to manufacture the second instruction:

SCOPEM0 1 ; 5 0 - SCOPEM01 2 7 0 = 6 cycles

Time to put the resultant point into LLIST -1:

SCOPEM0 12 8 0 - SCOPEM0 1 Z90o 4 cycles

Time to manufacture the third instruction:

SCOPEM0 1 3 00 - SCOPEM0 1 3 2 0  6 cycles

Time to increase Ri pointer by one. object program counter by three, and

decriment 0 by one:

SCOPEM01 3 3 0 - SCOPEM0 1 39Q0 = 13 cycles

Time to form a unary minus triFrl set of instructions:

-313-



APPENDIX XIl

IMINUS01150 SCOPEM0 1 3 9 0  44 cycles

Powers

Time to test S,-, for absolute value:

POWERS 0 14 0 0 - POWERS 0 14 10 - 5 cycles

Time to manufacture the first instruction:

POWERS 14 4 0 - POWERS 0 14 8 0 = 10 cycles

Time to manufacture the second instruction:

POWERS0 14 9 0 - POWERS 0 1 5 10 = 6 cycles

Time to manufacture the third instruction:

POWERSI520 - POWERS 1 5 3 0 = 4 cycles

Time to put the Ri pointer on LLIST -1:

POWERS 01560 - POWERS0 15 8  = 6 cycles

Time to increase the Ri pointer by one. the program pointer by four, and

decrease 3 by two:

POWERS 01590 - POWERS01650 = 14 cycles

Time to fornm a calling sequence of four instructions:

IPOWERS01400 - POWERS0IS50 = 45 cycles

. ABS. V V Condition

Time i S4.2 ABS.:

POWERS0 14 0 0 " POWERS0 14 30  6 cycles

-314-

t.



APPENDIX XII

Time to form the first instruction:

ABFORM0 1 63 0 - ABFORM 0 17 0 0 = 10 cycles

Time to form the second instruction:

ABFORM0 17 1 0 - ABFORM0 17 2 0  4 cycles

Time to form the third instruction:

ABFORM0 17 3 0 - ABFORM0 1 7 5 0 = 6 cycles

Time to put Ri on SLIST -2 and increase the object program counter by

three:

ABFORM0 1 7 6 0 - ABFORM 0 18 00 = 10 cycles

Time-to increase Ri pointer by one and decrease $ by one:

ABFORM0 18 1 0 - ABFORM0 18 3 0 = 6 cycles

Time to form a triple set of instructions for this case of absolute value:

XPOWERS 0 1 4 0 0 -ABFORM 0 1 8 30 = 42 cycles

Normal Absolute Value

ISCOPEM0 12 1 0 - SCOPEM01 3 9 0 = 37 cycles

-31IS- ._

-*



APPENDIX XTI

"SIMULATION OF A COMPILATION

Status of SList

Accumulative Accumulative
time to time to

L-eference reference
S ;tern (cycles) S item (cycles)

I 1216 ) 597

Z 1205 + 532

1090 ( 465

S( 973 J 420

A 962 t 411

* 947 K 400

B 936 328

+ 871 L 317

C 860 / 302

* 845 M 291

D 834 ) 280

8Z3 / 265

* 808 ( 198

-( 41 - 14P

F' 696 P 138

S687 + 73

F b76 Q 62

+ bbl 47

ABS. b19 R 3t,

1 608 25

- •i,)..



APPENDIX XII

Status of LList at Various Intervals

Accumulative
time (cycles)

a L a L S0--L a I L1 S aL

0 -I 20 0 - 20 0 -2 zo
1 ) 31 1 ) 31 1 ) 31

2 R 42 2 R1 101 2 R1  101
3 * 57 3 3 + 133

4 Q 68 4 P 144

5 05 0

PREC(+) " PREC(*) PREC(+) > PREC(")") S9.1 is an operator
Q*R" ".P-1 2

a Laa a La SO-La a LO S -- L

o 20 0 o 20 0 -4 20

1 ) 31 1 ) 31 1 R 3  260

2 R1 I01 2 R 3  226 2 / 275

3 133 3 0 3 ) 286

4 R z 174 4 M 297

5 5 / 312

6 L 323

7 0
PREC(") < PREC("+") LaI--'La. PREC(-) p -u< PRFC(/)
Rf2  1'R --,RO L/M .R4

-.317-

~ ~H - . I~u U~I~I UIA--EP



J
APPENDIX XII

Status of LList at Various Intervals (Contivued)

a La S 0-- L a La S/3-La a La S/3 a

0 -t20 0 -f 20 0 -I 20

1 R63 260 1 R 360 R3 260

2 / 275 2 / 275 2 / 275

3 ) 286 3 ) 286 3 ) 286

4 R4 363 4 R4 363 4 R6 493

5 -395 5 - 395 5 0
6 K 406 6 R.5  440

7 Of (
S. . ABS. PREC.(")") < PREC(-) (Ri)CASE

,JTK--R5 R 5 - R 4 --. R 6  L L0 1 -L- 2

a La S 0--La a L Sa----LL a L

o 20 0 -! 20 0 o 20

1 R3  260 1 R7 560 1 R7 560

2 / 275 2 + 592 2 * 592

3 R6 .Z7 3 ) 603 3 ) 603

4 4 1.-. 614 4 R8 637

5 - AflS 5 + 671

"/ 6 F 682

PREC(+) < PREC(/) ABS. I--R 8R. /R -.R,_R So.. 2 AB'3'
.'. ETF--R9

6

-318-

pJFl nmm • hm.m n i mi m i• il



I
APPENDIX XI_

Status of LList at Various Intervals (Continued)

a La SP-A r, a a La S--- cLa 2 La S--L

0 -4 20 0 4 20 0 A 20

1 R7 560 1 R7  560 1 R 7  560

2 + 592 2 + 592 2 + 592

3 ) 603 3 ) 603 3 R1 0  803

4 R8 637 4 R10 769 4 * 818
5 + 671 5 ( 5 ) 829

6 R 9  716 6 D 840

7 U7 7 855

8 C $66

9 f

PREC("(") < PREC(+) (R CASE PREC(+) < PREC(*)
S.R 9 + R 8-- R1 0  .. Lac*--L 2  -

S La S L a LO S LO a La S i -a

0 A4 20 0 A4 20 0 420

1 R- 560 1 7  560 1 560

2 + 592 2 + 592 2 + 592

3 R10  803 3 6Z10 803 3 R1 0 80i

4 * 618 4 B 18 4 *81

5 ) 829 2) 69 5 829

6 R 11  899 6 R61 899 6 R1 3  1051

7 4 931 7 + 931 7

8 B 942 8 R 12  1001

9 * 957 9 D

10 A 96S

11 1
PR£C("("*) < PRErC(e) PREC("t") < PSRIC.() (N)2CASE

A*B--R1 2 R12 +.R 11,=R 1 3

-319-

low'I I-K4 .



APPENDIX XII

Status of LList at W -!ous Intervals (Continued)

a L So a La S -- La a La S-La

0 t i. 0 -j 20 0 -4 20

I R, 56p 1 R 560 1 RI 5  1168
2 + 592 2 + 592 2 = 1200

3 RI 0  803 3 R1 4  1118 3 Z 1211
4 * 818 4 0 4

5 R 13  1085

6
PREC(=) < PREC(*) PREC(=) N PREC(+• "TERM" CASE
R- RI3*R10"-4R14 R14 4 + R7"R I. Z R 1R--6

a La S.-La

0 A 1270
1 R1 6  1244

2

Object Program

MNEMONIC TAG ADDRESS

MUST LDQ POOL + 14 91 C(Q)--"MQ

FMP POOL + 15 97 C(Q)*C(R),--MQ

STQ POOL ÷ 100 107 MQ-R 1

CLA POOL 164 ZERO-AC

FSB POOL+ 13 170 C(AC) - C(P)--AC
STO POOL- 101 180 AC--R2

CLA POOL + 101 216 C(R 2)--AC

FAD POOL* 100 222 C(R 2 ) # C(RI)--AC

STO POOL- 102 232 C(ACQ--R 3

CLA POOL* 11 353 C(L) -- AC

-3Z0-

1j iumI m. |uW 
l l -•



APPENDIX XII

Object Program (Continued) j
FDP POOL + 12 359 C(L)/C(M)-MQ

STQ POOL + 103 369 C(Q)-R

LDQ POOL + 9 426 C(J)--MQ

CLA POOL + 10 432 C(K)---AC

TSX 1 EXF' 436 GO TO SUBROUTINE "EXP"

STQ POOL + 104 446 RETURN HERE C(XI) + 1

CLA POOL + 104 483 C(R 5)- -AC

FSB POOL + 103 489 C(R 5 ) - C(R 4 )--AC

STO POOL + 105 499 C(AC)-R 6

CLA -O OL + 105 550 C(R 6 )--AC

FDP POOL + 102 556 G(R6 )/C(R 3)--MQ

STQ POOL + 106 566 C(MQ)--R 7

CLA POOL 627 ZERO-'AC

FAM POOL + 8 633 IC(I)I-AC
STO POOL + 107 643 AC-R 8

LDQ POOL + 6 70Z C(E)--MQ

CLA POOL + 7 708 C(F)-AC

TSX 1 EXP 712 GO TO SUBROUTINE "EXP"

STQ POOL + 108 722 RETURN C(MQ)-"R 9

CLA POOL 4 108 759 C(R 9)--AC
FAD POOL + 107 765 C(R 9 ) - C(R 8 )---AC

STO POOL + 109 775 C(AC)--R 1 0

LDQ POOL - 4 889 C(C)--MQ
FMP POOL - 5 895 C(C)AC(D)-MQ

STQ POOL - 110 905 MQ-R

LDQ POOL - 2 991 C(A)"- MQ

FMP POOL - 3 997 C(A)eC(b)-MQ

STQ POOL - 111 1007 MQ--R 1 z

CL: POOL. 111 1011 R 1z-AC

-32-

A)



APPENDIX XII

Object Program (Continued)

MUST FAD POOL+ 110 1047 C(RIZ) + C(R 1 1 )--AC
(cont) STO POOL+ 112 1057 AC-•R 1 3

LDQ POOL+ 112 1108 t(RI-M)

FMP POOL+ 109 1114 C(R 1 3)*CIR 0)-MQ

STO POOL + 113 1124 MQ--RI 4

CLA POOL+ 113 1158 C(RI 4 )--AC

FAD POOL 4 106 1164 C(R 1 4 ) + C(R 7)--AC
STO POOL+ 114 1174 AC--RI 5

CLA POOL + 114 1234 tR 1 5)--AC

STO POOL + 1 1240 C(AC)-Z
NOP POOL + 115 1250 Rf + I

POOL 00 00 00 00 00 00 ZERO

00 00 00 00 00 00 Reserved for Z
00 00 00 00 00 00 Reserved for A

00 00 00 00 00 00 Reserved for B

00 00 00 00 00 00 Reserved for C

00 00 00 00 00 00 Reserved for D

00 00 00 00 00 00 Reserved for E

00 00 00 00 00 00 Reserved for F
00 00 00 00 00 00 Reserved for I

00 00 00 00 00 00 Reserved for J

00 00 00 00 00 00 Reserved for K

00 00 00 00 00 00 Reserved for L
00 00 00 00 00 00 Reserved for M

00 00 00 00 00 00 Reserved for P

00 00 00 00 00 00 Reserved for Q
00 00 00 00 00 00 Reserved for R

-322-

4 - - -- .-- .... ... •-r -- _ _m"• -W



APPENDIX XII

POOL + 100 00 00 00 00 00 00 Result of Q*R = R

00 00 00 00 00 00 -P = R2 f
00 00 00 00 00 00 R 2 + R, = R3

00 00 00 00 00 00 L/M = R4

00 00 00 00 00 00 3TK = R 5

00 00 00 00 00 00 R5 -R 4 = R6

00 00 00 00 (,0 00 R 6 /R 3 =R 7

00 00 00 00 00 00 .ABS. I = R8

00 00 00 00 00 00 EtF = R9

00 00 00 00 00 00 R9 + R8 = R10
00 00 00 00 00 00 C*D = R11

00 00 00 00 00 00 A*B = R1 2

00 00 00 00 00 00 R12 + RII -- R13

00 00 00 00 00 00 R1 3 *R1 0 = R14

00 00 00 00 00 00 R 1 4 + R7 = Ri

5. CONCLUSIONS

When comparing the compilation time of the simplified expreasions to that st

its equivalent complex expression, it is readily seen that the writing of com-

plex expressions is to a marked advantage. For most compilers, however,

this is not the case and the programmer can usually compile simplified ex-

pressions with greater speed. The compiler size could be reduced consider-

ably if only the rimplified type of exrressions is to be compiled but, of course,

this would mean a sacrifice of compl.ation time. If the generated object pro-

gram (Appendix D) is examined, it is readily seen thokt this is not an optimum

objtct program. To generate an optimum object code. additional tests could

be included in the compiler but these changes would increase compilation time.

Many of today's compilers are designed with the desire of generating optimum

object program in mind. In order to accomplish this, the substitution expres-

sions are scanned several times looking for:

-323-

1W4I



APPENDIX X.I

1. Repetitive triples, i.e.:

x= a+b,

y C + D*(a + b)

where a + b is the repetitive triple

Z.. Commutative triples, i.e.:

x= a+b,

y = C + D*(b + a)

where a - b = b + a, etc.

3. Redundant object code, i. e.:

STO R. AC--R.

CLA Ri R. i-"AC

In the present algorithm, none of the above considerations was employed. For

large programs and programs that are developed with long-range use in mind,

the above features should be considered in the writing of a compiler. Such a

compiler would be useful in a production-type :omputer environment. Such

features sometimes would result in long ccompilaý;on times to accomplish short

object Frogram execution times. If the object program is to be used only once

or twice, it sometimes becomes absurd to use as much as twice the object pro-

gram execution time in order to accomplish a compilation.

The accumulative compilation time for compiling the expression

Z = (AWB - C*D)(ETF ABS. 1) - (JK - L/M)/(-P - Q'R)

wos found to be 2. 37 msec and for an equivalent set of simplified expressions

(using a more gereral subroutine). 3.27 msec. The aigorithm consists of

184. IBM 7090 ;nstriactior.% and 6S4 locations for constants and working sto:-
,age.

-324-



K . ~4. .

APPENDIX XIII- MACHINE II PROGRAMMING4

1. INTRODUCTION

This is the programming report for the compilation problem programmed

for Machine U as a portion of the work performed under Contract AF30-

(602)-3550. The compilation problem was the programming of a portion

of the Michigan Algorithm Decoder (M,,,D) The section of MAD chosen

for demonstration was the compilation of substitution statements. Sub-

stitution statements are composed of variables and operators whose values

are substituted or made equal to some variable.

When grouped, the elements of the statement fall into sets of triples, two

operands and an operator, that can be used to generate art object program

for machine execution. The keys to statement decomposition alid object

generation are operator precedence, the order of execution when a state-

ment is composed of various operators, and a statement scanner.

Item ? contains a discussion of the programs. Item 3 contains results of

the programming, a comparison with the IBM 7090 program, and the com-

piler flow charts and programs. .tern 4 contains a discussion of the ob-

ject program generated and the object program.

2, DISCUSSION OF THE FROGR.WM

a . StAternet

The statement sele-.ted for demonstration is

Z (A , B +C * D)+(E t F+ABSI)+

( I K. LiM)/(NEG P+Q R)

-3Z5-



APPENDIX XM

Each variable is represented as a tingle alphabetic character, al-

though a maximum of six are recognised in the MAD translator. It
is assumed that the decoding process has been completed and a table

(the L list) generated ývith single-word entries corresponding to each

variable and each operator in the statement. The entries in the L

Flst are in the same order as the elements in the substitution state-
rmsent. The L list is scanned from left to right and, depending on the

tests that are satisfied, an output list (the P list) and a temporary
list (S -ist, or stack) are generated.

Operands are transferred immediately from the L list to the P list.
Operators are transferred to the %op of the S list if their precedence

is equal to or greater than the current operator on the top of this list.

Termination and grouping symbols require special handling. Left
parentheses are unconditionally put on the S list. Right parentheses

cause the removal of all elements frr-n the S list and transfer to the

P list with the parentheses, both right and left, then removed. The
right termination symbol causes the transfer of all remaining oper-

ators in the S list to the P list.

The substitution statement is assumed to have less than 256 elements

so that it can be considered as occupying at most one block of memory.

The object program also is assumed to require at most one block of

memory. These restrictions are not necessazily fixed but could be
removed with minor programming changes.

When an operator is added to the P list, the preceding two operands
with the operator are sent to a generator program to produce a seg-

ment of the object program. The resultant, RV is then entered in

the P list an.d the scanning continued.

Table XLI- 1 shows the L list. Table XIU-Z showa the P list status

and the compiled triples.

-326-



O-A

APPE~NDIX XUII

TABLE XIII- I L LIST

ELem,.-nt Ele•nent Element
no,.) Element (no,) Element (no. Element

Z 14 E 27 L

a a 15 f 28 /
3 ( 16 F 29 M

4 A 17 i 30 )
5 " I8 ADLS 31 /
6 B 19 I 32

7 + 20 i 33 NEG

8 C 21 + 34 P

9 22 ( 35 +

10 D 23 36 Q

I1 124 37 •

12 25 K 38 Rt
13 ( -39

TABLE XIII-Z - P LIST STATUS AND

COMPILED TRIPLES

P list status Triples compiled

Z A R* 5 A .B

Z R C D R . R9  C 'D

Z R5  R9  * I 5 *R5 . 9

Z R?7  E F Ri EtF

Z R7  RI 5 ? AS Ri 8  AIS I

Z A. f 1  R; Ri . 5 R8
7 it, fill - R ig R I? It R 7

z R is J K I R44 * J t K

Z Rig R 4 L M / stag+ L/M
1 R I 1114 litoi +': ~ "Rt

z R.t RZ6 P NG a "EOG P

i t, RI 1ki 0 I,. * 1 R0 A Q
z Altl 1pit R )) AS? ' i •5 R 1) * a 17
z At2 kit AM1 I A)1 t %6' 'I

I lilt al l A R ll It R l1 a it
1 allI 5

.. .---.

•- •-Ir •lt,_•. . .. . . . ., .. . . ,...m ,. ;'- iril lillI

smmsss mI



0,

APPENDIX XIU

A flow chart depicting the process of starting a generator program

is shown in Figure XU-I- (the illustrations begin on Page 335). The

*routines have ft~und that an operator is to be transfe!rred to the P

list. When the transfer has been accomplished, an instruction starts

the SP block; this in turn. starts either SPU or~ SPE. When the required

data have been transferred to the generator programs, G1, G2, Gi's or

G4 BRING instructions are executed in SP and 0*, I*, or K*, enabling

starting of subsequent blocks of the program. The BRING instructions

request a result that is generated in a block started by the block in

which the BRING resides. The BRING is executed when the result is

generated. Hence, a block is not completely execuAted until the

BRING is executed. If slibsequent STARTs are dependent on a BRING0,

there will be a delay in them until execution of the BRING.

b. Assumptions

A variable in the L list or P list has the format shown below.

iADDRESV

The address of the whole word as it is contained in a block is i. Index

is a ponter to a list location. containing the symboli: name of the vari-

able, V is a bit, equal to a one, indicating that the i.ord corresponds

to a variablt. Addresi, to the memnory address of the vari~able thatt is

assun'ed as ik 'cci After L list generation.

An opcrator in the L, S. or P !iat h~s the fcrrnat shown below.

Th~e a~drr'w4 of tho %whi'l wurt1i* it app ar in ;,lock is i. The

procodorcc faf ths- opc'rat'r is* ,ntatnod in tho PRME field. V is a1
bit equal to 0. 4ndiacting that the oelement is an -.perator. Code is

the opevtioti cude.



APPENDIX XIII

The operations considered were floating point arithmetic, absolute

value, exponentiation, and equality.

c. Program Technil.ues

The program is a left-to-right statec.i scanner that allows gen-

eration of triples as soon as an operation can be transfL -red from

the S list to the P list. In the flow diagram of Figure XHII-2, the

ABLE and CHARLIE loop transfers operards from the L list to the

P list. If an element is an operator and its precedence is equal to

or greater than the top element of the S list, the S list is pushed

down and the element i3 put on top of the S list. If the operator has

less precedence than the top element of the S list, then the top ele-

me-t of the S list is put on the P list. When an operator is placed

on the P list, a generator program is started that produces the cor-

responding portion of the object program using this opeator and the

two preceding operands on the P liat. A resultant address is calcu-

latedl and entered in the P list as a variable.

The detection of a left parenthesis rssul~s in the transferral oa the

element to the top of the stack. A right parenthesis causes all op-

erators up to the first left parenthesis on the S list to be transferred.

in order, to the P list. Again, each operator transferred to the P

list 'its a (:orresponding generator program started that produces a

portion of the object programn corresponding to the operator trans-

ferred, The paren heses are thei dropp,.' froim h. lS st and are

not zransfe: red to the P list.

When a ri•ht ternminition is detected, lU, rcmat-oa optorator* An tho

S list 4.ro ranioferred to the P list in vrdvr, For ouch operator

transterred, 4 correspondoig p~nerator prh,.iram i# started prt -

d.tc s ptsrtion of the object prooram,

A Lrtpir to detected each tine an operator it ii t{rrcd 0r0tf th,

S liot to the P list, T'he operatids associtet~d wttht Ow o-porafor and



APPENDIX XIII

comprising the triple are imme:diately ahead of the operator on the

P list. The resultant address is calculated as the first word address

of the generated object progrrr.. segment. This resultanm address is

then placed in the P list as a variable. It will in turn. be considered

as an element of some triple.

The generator programs produce 4 segment of the object program.

The resultant is always left in the first wora of the object program

segment or, in the case of a double precision operation, in the first

two words of the segment. The initial address of a segment is cal-

culated easily by considering the maximum siza of all possible object

program segments. In this example, the size is indicated in the pro-

gram as . The index of th,. operator in the L list is used to de-

termine i ® , which is then added to the object program base address

and results in OBI + I • , the initial address of the object program

segment and the location of the resultant of the triple.

Parallelism exists both within any block of the program and between

blocks of the program and the generator programs. The algorithm

is sequential in nature; attempts to scan the substitution staterrnt

in parallel results in invalid intermediate forms of the statement,

Attempts to correct this uncovered a processor control problmrn.

Figure XLIU-I depicts the sequence -f a program started when an

operator is detected. The solid lines indicate the sequence executed

for a block start. The dashed lines indicate the path followed while

the initiating block is waiting fo:- an answer from the initiated block.

The initiated block in turn tests the operator and starts other blocks.

The G* G. loop in Figure XIII-I starts the SP block which tests the

operetn- t., determine if it is a unary or Winary operator. If it is

unary, the SPU block is started and a return to the G is accomplish.*d

by the BRING instruction iv G. If the operator is binary, the SPB

blork is started. The SPB block tests the operator and if it is not

an exponentiation, the GENO I block is started; if it is exponentition.

-330-



APPENDIX XIII

the GENO 3 is started. The SPB block is tested also by the BRING

instruction in G and when it is satisfied the GJ loop is reinitiated.

Some characteristics of Machine II make it a desirable machine. The

storage of results in the word occupied by the generating instruction

simplifl.es programming in that no explicit store instruction is re-

quired for MPC storage. However, a store instruction is required

for a memory store operation. The variety of conditional starts is

necessary to enable branching from a block. To execute a two-way

branch fro:-ri a block, two conditionals are required in that block, both

testin& the 0 ame word. In some respects, this is undesirable in that

extra instruc'Lons are required over what would be required in a se-

quential machine. However, no extra time is required because the

two tests are performed in parallel as soon as the test word is avail-

able.

The ability to acquire data from neighboring blocks is necessary for

program continuity. Data from a previous olock can be addressed

relative to the previous starting instruction or by absolute block ad-

dress. Data from a subsequent b.•ock can be retrieved by absolute

address within the sta.-ted block. A BRING and an M WAIT instruc-

tion for a block to be started should not be used in the same block.

The M WAIT instruction waits until all instructions have been exe-

cuted before starting a new block while the BRING attempts to bring

back a piece of data generated by that block. However, a conditional

or an unconditional start and a BRING instruction are compatible.

Data in memory can be found with the READ MEMORY, READ

MEMORY INDIRECT, and THRESHOLD instructions. The READ

MEMORY is an absolutt address instruction, the READ INDIRECT

permits an indexed access, and the THRESHOLD instruction permits

a next-higher-tb.mn threshold search.

A disadvantago is the quantity of data that must be paosed irom "ne

block to another. In the problem, as many as 8 to 10 words passed

ý331-

-3.-- - - - -WNW,



APPENDIX XIII _____________ ___ ___

through a series of bok.Timewise, this was not detrimental since

all the data wvere passed in parallel. However, each transfer re-

quired an instruction. In some cases, where a word was being used

as ý.n index, the shift instruction is placed elsewhere in the program

and the index augmented with the result left in its proper relative

location reaY-.y for transferral to the next block. Considerable time

is apent irn laying out data, transfers, especially when attempting tc

implement a program loop.

The instruction- erase option allows the programmer to maintain a

minimum of MPC storage. As results are used, they can be erased,

allowing MPG sltorage of other data. In the problem, however, it

was found that because of the amnount of branching and looping the

task of erasing data or maintaining data anid lvtting subsequent blocks

erase it where there was alternate subsequent blocks, became diffi-

cult and time consuming. One way to surmounit the problem would

be to alter the erase instructionsR so that the instruction would not be

executed until all data had be~m t:,ansferred to the new block. Then

the previous blc-ck c:urd b- wipee. out COMpletely. The instruction

would be a combination of ERASE an(; a modified M WAIT where the

wait wou'~d 1.) dc:'eudr--t o.. th.Ž transierrai of all data requested by

the new bloclk of program.

Pr)giarritning of Machine 11 has been relatively easy in some re-

spects and difficult ins others. It is easy to prograin in a straight-

forw;tr, 'r-e with ni atte. ijý at ~i~s .Howvevir. the, lack of

indexirie se~riousiv hamper~s any atterrpt to reduce tne siize of a pro-

grarn by usicig loops. The ability tv converse betwe~ea blocks using

the S4-1117 a ind BRING instru ~i-nF pa rtlý rt so' es -te difficulty, but

!hc no c'-sity I)?. t jin 't ;-id il ~' ed00 s prog ra ' l~ayI out of data

trtns ferrodi boxweo~n boicks still rez atti whx'n- ope ratir.n1 i s

ruslr,4tcci tt th.* P: It is~ pos~xile tha~t e\ven this difficuity citn

:o r!,t%,t'od y itA iinainug thos4- cit,; . oi a'a mcnorv, but here agi



APPENDIX XIII

the tradeoff sacrifices the speed of obtaining a result from the MPC

for obtaining a result from the memory. The former is obtained

while executing an instruction requesting the result while the latter

requires a READ MEMORY instruction and then an operating instruc-

tion to acquire the same result.

3. RESULTS AND COMPARISON

The results looked for in the programming portion of the study are time

to execute the problem, processors used during execution, ease or dif-

ficulty in programming, comparison with the results of programming a

similar problem on a sequential machine, and an extrapolation of times

for the two machines and subsequent comparison.

The algorithm fi-iilly used in the problem was more sequential in nature

than o'hers examined but did not display the control problems inherent in

some of the others when programmed. The recult was a very low average

load on the processors. The average loading was 1. 17 processors per

machine cycle for the total problem execution time. Peak loading is es-

timated to be no miore than 10 processors it, any machine cycle. Another

algorithm or a slightly longer or shorter program block could change the

peak, either increasing it or leveling it.

The time required to execute the algorithm for the translation of the sub-

stitution statement and generation of the corresponding object program

was 53. 585 msec. The speed ratio of the sequential machine to Machine

II is N to 27, where N is the number of statements to be compiled. If it

is assumed that there is more than one statement to be translated, then

the sequential machine will translate faster until the nuwnber of statements

is 27. The fact that there are numerous processors and that the proces-

sor loading is small allows Machine 11 to process numerous statements in

pairallel. When the statement Aloading exceeds 27, the sequential time re-

quired for translating will continue to increase linearly while the Machine

II time witl remain relatively fixed at 54 misc, Assuming availability ci

S i .

ZP• •



APPENDIX XIII

256 processors, then Machine U can average about 256/1. 17 = 219 state-

ments every 54 msec. This would give Machine I a speed advantage over

the IBM 7090 of approximately 219/27 or 8 to 1. The actual time required

for processing, of course, depends upon the sequence of operators and the

amount of grouping within the substitution statement.

4. OBJECT PROGRAM

The object program generated is shown in Table XUII-4. Segments of the

object program block are generated each time an operator is detected and

transferred to the P list. Each segment is then stored in memory in the

block assigned to the object program. Addresses within the block are de-

termined by the index of the operand in the L list and the predetermined

maximum size of any object program segment.

Some variables in the segments reside in memory and some reside in the

MPG. Each generator determines where a variable is located and gener-

ates the appropriate instructions, either READ MEMORY or S-IFIr THIS

BLOCK. Upon execution, the variable replaces the instruction and the

triple is executed with the resultant then occupying the first two words of

the segment.

The object program can be executed in the same manner as the translator.

It should be noted that the execution could be done simulthneously with

translation so that the statement resultant would be available only shortly

after object generation.

-334-



APPENDIX XIII

61 Sp

"F 61

S70, 70

F

Span 5PU

240.

G4

KO - ,' G ItOEOGE
.J = JOl

om aFOX

K KOALA

a I GENOS
03. GENOa

04 GIEN04

Figure XIII-* Flow Chart for Triple Generation Process

-335-



APPENDIX x

START

GOG FO EASY

SFigure XUI-2 - Master Flow Diagram

-336-

Upab 4



APPENDIX XI_

ABLE BAKERi i
i. jI k. ij. k,

L, PL. S, OB L. PL, S, OB

NO NO

c i) -OPERAND 
13BAKER 

OPERATOR 
-RTERM 

DOG

YES YES

CHARLIE N

CHARLIE OPERATOR - ES

S.....FOX

LPARENS

YES

i, j. k. YES

L , P L , S. 0 13
i GEORGE

[OPERANDI __ __ __ ___+_I

ASLIPL+i

AGLC

Figure XLU-3 Able, Baker, Lharlie Subroutines

-337-



APPENDIX xm

:;•i, EORGE

JOE!1, j. k

L., PL. $. O0

i, j. k
L, PL. S, 0O

kL + i)

lP> I+ JOE: - 1~

SLm'

1WAIT FOR SPjj

AGLS

eXIU-4 ý;trge. Joe Subroutines

-

4. I:



APPENDIX XI..

EASY HALO

i,. j,k 1, , . k
L. PL, S, 08 L, P1. S, 09
(L + 1) LPARENS

DROP
k k-i LPARENS

RPAMIRNS

(L + i) .54 k k k +

Li =i+ I +1 I

ABLE ABLE

FOX IPSWICH

i. j, k i. j. k
L. PL. S. 0J (1. 4 L ) RPALS. S

(L + iI RPftENS (Is k)

IS54 k) LPAREt4 HALO ( i-P~

IP IC H
WAIT P 0 '

POx

Figure XIU-5 - Easy. Fox, Halo. Ipswich Subroutines

-339-

=-- ~ -. - - ----- u - ------



j APPENDIX XMl _

000 KOAL'

ij --

P L, PL. S. o0 I
L, -PL, S, OP(L+I
(L + i) RTERM L(S1k

SPL

sp
....... FOR SIP

Sk =k P-I]W.TIOPq SP I

IS + k NLLDOG i
" S~PU _

KOALA k

p L. S.09. Jo

WAIT FOP

" + 3k, "L. 5 9 00 II

(OCAc" vsSi Uo PLs
UNAMYt~

'!•P•OS NOD

"4t Figre XIII-6 - Dog. Koala. SP, SPU Subroutines

.34n.



APPENDIX XIII

OPERATOR? (PL + J) 09'SN(PL + J)
* ARITM N(NIPL + ji)

L, PL. S. OS [EO4Gm READO MEMORYI

N(PL + i
N(N(IrL* )

C CALC ULATIE
00 ADOREtSS9Sj

CALCULATE

IT~nE INS?. IN

JR.~~~0 PLO + *ptGFD
I V*,J. mv. PUPJ

Figure XW-' * SPB. GENO1 Subroutitnve



APPENDIX Xm-

GE h02 GENO$

j p+) O +i iX 1 N-1~
IPL + ] 08 PL + j) 08 + jX

NIPL 4 j) 1NN(PL + j)
N(NIPL + j))

READ MEMORY READ MEMORY

WOR ML INSi j FOR ML INST

CALCLATECALCULATE-

Or ADRSE OS ADDRESSES

|TCONE tkaT IN STORE INST INi00 PRO o Co

GEN04 I HALT

(PL + j), 08 + c X

NNPL. + J)[NiN(PL -6j)

FOR Ml- IN4•f"T _

[C.A LCULATE
09 ADODMESESJ

[ STCOE INST

0oOo•

NAL'

Fi&ure XtI-8 - GE.NO?. GENO3, GENO4 Stbroutines

-342-

-•4w.



APPENDIX XI!

TABLE XIII-3 - COMPILER PROGRAM

Time

Item Instruction Remarks P R

ABLE a SPB 0 1 i a - - I 6 7

+1 SPB 0 2 j a - - j 6 7

+2 SPB 0 3 k a - - It 6 7

0 SPB 0 4 L address a - L - 6 7

+1 SPB -0 5 PL addeesi a - PL - 6 7

+2 SPB 0 6 S address a - S - 6 7

+3 SPB 0 7 OB address a - OB - 6 7

y + I THS, M a 0 (L + 1) 10 II

+2 LOI V + I VBIT 14 15

+3 EQZ Y + Z y+ 3 18

+4 CONS BAKER OPERATOR - I

+5 NEW y+ 2  y+ 6  18

+6 CONS CHARLIE OPERAND - 11

+7 CONS VBIT - I

BAKER a SPB 0 a i 6 7

+1 SPB 0 a"1 6 7

+2 SPB 0 a+Z k 6 7

43 SPB 0 0+ 3 L 6 7

+4 SPB 0 a + 4 PL 6 7

+6 SPB 0 &+5 S 6 7

+6 SPB 0 0+6 OB 6 7

+7 SPB 0 ' + I (L + i) OPERATOR 6 7

L06 0+7 RTLRM A 9 B 10 11

+1 EQZ 0l + 2 0 if RTERM. I otherwise 14

+2 CONS DOG - I

+3 L06 a+ 7 LPARENS A 0 B 10 11

+4 EQZ a + 5 0 if LPARENS, I otherwise 14

+5 CONS VASY -

+6 L06 RPARENS A@R R0 II

+7 EQZ + a 0 if RPARENS. I otherwise 14

+8 CONS FOX

Y MPY 1+ 14 is

41 MPY 0 IS 19
+2 NEQ 'V + I j * 3 il 0 then D a A + 5 C 22
+3 CONS GEORGE it S then 0 a ABC -

+4 CONS TER M 1

os CONS LPARENS -

+6 CONS KPAREN3S

CHAAu[ r STB 0 ".i" II 8

NOTE: P t the cycle time ateer the block start to which a processor is active; R is the cyrle time hfer the block start
Is which &M result to evaila1b.-

-343-

____ • -- W-arr-,,••



APPENDIX MY

TABL XIII-3 -COMPILER PROGRAM (Continued)

Time

Ihem Instruction Remarks P R
SCHARIAE +1 STB 0 1+ 17 J t i

(coat) +2 SPB 0 0+2 k 6 7

+3 SPB 0 0+ 3 L 7

+4 SPB 0 0+4 PL 6 7
+5 SPi 0 0 ÷5 S 6 7

+6 SPB 0 066 OB 7

SSPB 0 a +I j 6 7
+1 DD one I - index address 21 22
+2 S'"D 0 "+ I (L +i) OPND 6 7
+3 L07 a+4 0+ 1 PL + j- PL 25 26

+4 STO a+ z 3 ý 3 29 30
N SPB 0 aC Get i 6 7
+1 ADD Y one i : 1 10 11
+2 MWT ABLE 32

+3 CONS ONE
DOG a SPB 0 a 1 6 7

+1 ADD 0+6 one a j 7,j+ 10 II

+2 ADD 0+9 one k k = k+1 10 11
+3 SPB 0 0 +3 L 6 7
+4 SPB 0 a+4 PL t 7
+5 SPS 0 a+5 S 6 7
+6 SPB 0 ao+6 08 6 7
+7 SPB 0 a+ 7 (L 4i) 0 OPERATOR RTERM 6 7
+8 SPB 0 0+ 1 6 7
+9 SPB 0 a + 2 k 6 7

t 10 THS a & 9 a + S fa + x) 10 li
+11 L06 O÷ 10 NULL 14 15
+1÷ EQZ 0 a11 + 13 is ,
+13 CONS HALT END I

+14 NWQ + iI O+ IS 18
415 CONS KOALA

'16 CONS orýe

+17 CONS null .

EASY a •T8 0 A.1) .14 Is
+1 SP 0 I, 1

Al STS 0 a l, I 14 is
$I A -3 o I L 6 1

.4 SPF 0 OFl' , 6

# Spa 0 0 S 6

#6 SFP 0 4O 'S
T Spa 0 * (L 1 •) OPERAND - LPARENS 6

S*6 LO? O+ It to +III

-,344.

4 eKk..



APPENDIX XIII

TABLE XI2I-3 - COMPILER PROGRAM (Continued)

Time

Item Instruction Remarks p R

EASY +9 STO a+7 0+8 (L+i) + k- I2 23
(cont) +10 SPB 0 a t 2 k 6 7

+11 SUB *+ 10 one k, It 1 0 11

+12 SPB 0 0+ 1 i 6 7

+13 ADD a+ 12 one i i + 1 10 11

+14 MWT ABLE z5
+15 CONS ONE - I

FOX o SPB 0 a 1 6 7

+1 STB 0 a+ 10 j 14 15

+2 STS 0 a + I I k 18 19

+3 SPa 0 a + 3 L 6 7

+4 SPa 0 0+ 4 PL 6 7
+S SPb 0 a+ 5 S 6 7

+6 SPa 0 a+ 6 0B i PREG 9OPcode 6 7

+7 SPa 0 *+ 7 (L i) = RPARENS 6 7

+8 SPa 0 a+ I j 6 7

+9 SPB 0 0+2 k 6 7

+10 ADD a o8 one j+I 10 1I

+11 ADD a+9 one k+1 14 1,

+12 L07 0+5 0+9 a + k address 10 II

+13 THS, M 0 &+ 1z is + k) - PRLC 9 OPcode 14 is

+14 LOI a+ 13 OP MSK is 19

+15 L06 *+ 14 LPARENS MSK 41 23
+16 EGZ 0+ 1I o+ 17 LPARENS YES 26 -

+17 CONS HALO - I

+18 N EQ 0+ IS 0+ 19 26

+19 CONS IPSWICH t

+z0 CONS one

+21 CONS OP MSK j

*22 CONS LPARENS MSK

GEORcGE a SPa 0 a
Al ADD 0 * IS o I to 1

+ ADD 1 34 one * I O II

Spa 0 a* 3 L (1

Sa0 O ~lItI
• SPa 0 a , (e, 1 t)) OPRAIOIt

#7 LOI 6 PRX. M3K OPERtATOR PRI.O. I

09 T., is t4 0 10 11
, Lot a 9 #'tl,R• %43K Is - k) aowttaoP PRkFC, TOC" 4! V,:

501 SLR a * 7 a tO OP PPRVC • IS I OFp iC 17 I

.345-



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time

Ins Item truction Remarks P R
GEORGE +12 GTE 2+11 0.+13 21
(coat) +13 CONS JOE

+14 SPB 0 a+2 k 6 7
+15 SPB 0 a + 1 j 6 7
+16 L07 a+4 a+ IS PL+j 10 II
+17 STO 0+9 a+ 16 (s + k) -PL J 14 15
+18 LTZ 0+11 +23 21 -

+09 BRG a+ 8ll 0+18 54 S5
+20 NEQ 0+ 19 +2Zl 58
+21 CONS GEORGE 1
+22 CONS PREC MSK 1
+23 CONS SP
+24 CONS ONE

HALO a 3TS 0 &+ 10 i 14 Is
+1 STB 0 0+8 j 14 IS
+2 SPB 0 0+2 k 6 7
+3 SPB 0 0+ 3 L 6 7
+4 SPB 0 0+4 PL 6 7
+5 Spa 0 a + S S 6 7

46 Spa 0 0+6 OB 6 7
+7 S3PB 0 0+ I j j - I to counter j j + 1 6 7
+8 SUB a + 7 of.e 10 11
+9 Sp3 0 i =i + 1 6 7

10 ADD a + 1 on* 10 11
+I1 MWT ABLE 18
+12 CONS ONE

IPSWICH 0 Spa 0 0 i 6 7

+1 Spa 0 0+ 10 j b 7
+2 Sp3 0 0+ 11 Ik 6 7
+3 S3P 0 g 4 3 L 6
+4 Spa 0 e+4 PL 6 7

+5 Sp8 0 0 o5 S 7
+6 SPB 0 a 0 6 05

47 pSa 0 a* ? (L' l U RPARMN t
.8 SP5 0 a.+ 11 N* k) - PREC Q OP cooe* 7

44 +9 L.? 7 # 4 a * I PL j to I1
+ 10 STO 0 +' q• +9 to * k) "- PL * 14 Is

+11 Nl•1 •* f#1 14 I0
2 0PIO+ I" @1 * II artng SPe* II is 59

+13 NtO v# Is q .14 61
#14 CONS FOX
.15 CONS P

-346-

4.t



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time

Item Instruction Remarks P R

JOE a ADD 0+9 one :i+ 1 10 11

+1 SUB 0+9 one J x J- 1 10 iI

+? SUB 0 ,10 one k a k- 1 10 3i

+3 Sp3 0 Q+ 3 L 6 7

+4 SPB + a+4 PL 6 7

+5 SPB 0 0+11 S 6 7

+6 SPB 0 a+6 OB 6 7

+7 Spa 0 a+8 (L + i) a OPERATOR 6 7

+8 SpF 0 0+1 j 6 7
+9 SPB 0 a 1 6 7

+10 Spa 0 a + 2 k 6 7
+11 107 a+5 0+2 s+k-I 4 Is
+1? STO 0+7 0+11 (L+c) -. s+k- 1 16 19

+13 MWT ABLE 22

+14 CONS one -

KOALA a SPB 0 a 1 6 7

+1 Spa 0 0+3 J 6 7
+a Spa 0 0+2 k 6 7
+3 SPB 0 a + ! L 6 7

+4 SpF 0 a + 4 PL 6 7

+5 Sp3 0 +65 S 6 7
+6 SPa 0 0+6 OB b 7
+7 sPB 0 q+ 7 (L + i) OPERATOR R ITERM 6 7

+8 Spa 0 0+ 10 (S + k) 1NULL 6 7

+9 L06 0+4 a+ 1 PL+J 10 11
+10 STO a+8 0+9 (3+kk). PL+J 14 is
+11 NEO 0+9 a+ IS 14 i5
+3 35.0A @ 4. 0+ ÷18 55 59

+13 NE1 112 + 1 14 41
414 CONS DOG - I

+I5 CONS SP

SP a Spa 0 a I 4 7

+3 Spa 0 0+1 J 6 7
+2 Spa 0 0I k 4 7
43 SPa 0 0+3 L 6 7

+4 SPa 0 0+4 PL 4 7
+S SpF 0 * S £ 6 7

#6 SPa 0 56 o 4 7
+7 SPS 0 0+6 ise b) a PRI•C OP Codo 4 ?

#4 LOt 0+7 OP b"K I0 1
. L0.6 **I ADS WK 14 Is
.10 L.0 "to NGMK 14 I5

-347- I

• • •• • •• •



APPENDIX XIII

TABLE XIMI-3 - COMPILER PROGRAM (Continued)

Time

Item Instruction Remarks P R.

SP +11 MPY 0+9 & ÷10 16 19
(coutl +12 EQZ + ÷11 a+ 13 22

+13 CONS SPU - I

+14 NEQ a4+ 11 + 1s 22 -

+15 CONS SPB -

+16 Bp' (14 @414 + 14 SPB a + 14 2 22

+17 BRG a+ 12 0+11 SPBa+ 11 21 22

+18 LOt a+ 16 a+ 17 25 26

CONS OP MSK - I

CONS ABS MSK I 1

CONS NEG MSK -

SPB a SPB 0 a 1 6 7

+1 SPB 0 a + I j 6 7

+2 SPB 0 a + 2 k 6 7

+3 SPB c a + 3 L 6 7

44 SPB 0 a + 4 PL 6 7

+5 SPB 0 a + 5 S 6 7

+6 SPB 0 a + 6 OB 6 7

+7 LOI Q+ 11 imsk i - - - 14 15

+8 STB 216 a + 7 imsk 18 19

+9 LOI o+ 12 ii~ask 26 27

+10 STB 216 a + Q 30 31

+11 THS. M a+ I a+4 (PL +j) 10 11

+12 THS, M 0+8 2+4 NjPL + J) 22 23

+13 THS, M a + 10 a * 4 N(N(PL + j)) 31 34

+14 THS a + 11 0+ IS TAB OP CODE GENO Address 14 15

+15 CONS TAB TAB - 1

+16 MWT a + 14 a + 14 START A GEN PROG 18 -

+17 MPY a 0 to 10 11

+18 LOT 0 + 6 a+ 17 OB 4 i 14 Is

414 LOT 0,- 18 VBIT ai18 19

'.O LOT + 4 a *1 L * 10 I1

421 sro o0 + I a + '0 PL +j 2 at3

*42 CONS 0 - 1
+Z1 CONS VrIT - I

6. ýNO I a0j• •I1 (PL -,J) t!
S .• it 0 a • 1 N(PL * j! b npe.,aftd k, 1

S St.% a. I1 I N(N(PL * jI) A opqrand 6

.4 jl'o 0.4 a-OP Code 6 7

0 ~ •, * 10 t! t' M1R.I I ::

-348-

- -'------" '
low



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time

Item Instruction Remarks P R

GENOI +7 ADD a+ 3 one OB + ix + I 10 I!
(cont} +8 ADD a + 3 Iwo + 2 10 I1

+9 ADD a+ 3 three + 3 i0 II

-rl0 THS a + 4 +M 14 15
+11 CONS OCT

+12 START GI0 B 3

+13 START GI0 A 3

+14 BRG a+ 12 6 B RDMor STB 29 30

+15 BRG a + 13 6 A RDM or STB 29 30
+16 LOI a 4 I ADDMSK address of B operand 10 11

+17 LOI a + 2 ADDMSK address of A operand 10 I1

+18 LOl a + 14 a+ 16 RDM or STB5 33 34

+19 LO7 a+15 I a+ 17 RDM or STB A 33 34
+20 LOI a + a iOMSK i*+ for A 14 15

+21 LOI a + 9 i6MSK i+ for B1 15

+22 STB 2 + 20 is 19

+"3 LO7 ? + 22 0+21 22 23

+24 L07 0+ 5 a+23 F - A addresses B 26 27
+25 STO a + 24 0+ 30 31
+26 STO 4+6 q+7 2 23

427 STO 0 + 19 + 8 37 38

+28 STO 0+18 a + 9 37 38

+29 CONS one

+30 CONS two

+31 CONS three

+32 CONS ADDMSK

+33 CONS i 0 MSK

+34 CONS EQMSK

GI0 a SPR 0 - I

+ LOl 0 INDEXMSK 10 it
+ £QZ a6' + 14
+3 NEG 0'3 ,4 414
+4 GiONS G 1 -

'5 CONS Cliz
DBcG +12 1 as 23

*7 CONS INDLX MSK I
GIl a %DM Ra R!"-I .DM 36 17

Gil 2 RDM SI 5! 3TI 6 ?

GENOZ a SPD 0 a* (PL•*j• PECRAIý. 6 7

#1 Spa 0 * 30 NMIPL.j OPERAND 6 7
+2 o' 1 OR 0 b ?

#1 SPO 04 II OP CODE 6 7

-.3491



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

3 Time
Item T-R

I7Ztem _- Instruction Remar•s TF7
GENOZ +4 F, 0 a*+ i 1.06 or L1O 14 15
(coat) +5 RIM I a 11 L06 r LAO 14 15

+6 RIM 2 a 4 14 STB 443 or CON3 0 .4 15

-7 ADD ( + 2 one OB ý is + 1 10 11

+8 ADD .+ 2 two + I t0 I I

+9 ADD I + 2 three - 3 10 II

+10 ADD V+ Z (cur + 4 10 11

+11 THS 0+ 4 a + 11 AI5 or NEG 10 11

+12 CONS oCT -

+13 START Gz0 3 -

+14 BRG a 4 13 b RDM jr STB 38 39

+14a BRG a + 1 7 RDM or STB 38 39

+16 ;O06 a+ 3 APSMSv 13 14

+17 EQZ Q+ 16 a + 19 17 -

+18 N[ E a+ 16 a + 20 17

+19 CONS ABS -

+20 CONS NEG - 1

+21 BRG 2+ 17 4 13 34

+ZZ BRG a + 17 5 33 34

+23 BRG a+ 17 t 13 34

+24 STO a a+ Z 44 45

+25 STO 0 + 30 + 7 44 4S

+Z6 STO a+ Z1 a + a 37 38

+27 STO a + 14 a + 9 :2 4

+28 bI'O a + 14at a - 10 e t 43

+29 1,07 a+ 4 #* ZZ 4 0 41

+30 LO-7 a Z3 40 41

+)1 CONS ore -

+3Z CONS two -

413 CONS three I

+34 CONS four-

+3% CONS ABiS MSK I

G20 a SPh a * I OPER AND 6

1 OI a IN.0XMS! 110 I I
*2Z KZ &. . a ;4 I'¶

A NEQ 0 1" 1%

.,4 CONS

Ct I~l(t; p. H rDM r S! B A 24 is

ADD 'i t. ,Ine 10M or STB A * I 1. )

.gl j i:)N, INI) MNK

.350-

iimwiw



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time

Item Instructiun Remarks P R

G'I a RDM RI R, RDM - 17 18

G22 a RnM SI SI STB. 1 18

SPU a SPB 0 a7

+1 SPB C o+! 6 7
+2 SPB 0 o +2 k 6 7

+3 SPB 0 a+ 3 L 6 1
+4 SPR 0 a + 4 PL 6 7

+5 SI'B 0 Q+ 5 S 6 7
+6 SPB 0 a+ 6 OB 6 7

+7 LO a + 9 imsk 14 15

+8 sTB 16 a + 7 i8 19
+9 THS, M a +l a+ 4 (PL + j) 10 11

+10 THS, NM a + 8 0o+ 4 n(PL + j) 22 23

+11 THS a+9 a + 12 OP CODE GENC address 14 15

+12 CONS TAB - I
+'3 MWT 0+ I1 Start A CENERATOR PROG Is -

÷14 MPy a 0 10 10 11

+15 LO7 a+6 a+ 14 OB+i@ 14 is
+16 L.07 a+ 15 VBIT 18 19
+17 L07 0+ + 4 + I PL + j 10 II

+18 STO a + 16 a + 17 Ri - Pl. + 22 23

419 CONS imak - I

+20 CONS VBIT - I
GENO3 0 SPB 0a I I1 (PL + j) 7

+1 SPB V Q +12 N(PI.. 4, ) B 6 7

+2 SPB 0 a + 13 N(N(PL + .)) A 6 7

+3 SPb 0 a + I8 OB + iO 6 7

+4 SPri 208 a + 14 OP Code 6 7

.5 RIM 0 o 0 )RC 1 14 I1
RIM 1 0.30 BOG 2 14 IS

. 7 1im 2 0.0 DOI0 14 iS

#0 RIM I gel0 MWt 14 is
# RIM f+ CONS 14 i5

-10 VliS *.4 10 111

oil C ONS OCT
'It S1AR1T * I1

4.11 CON'1 G31l I

-14 FIRG a@.3 4 ItC 0.4 I 10 t 1

41t PRG it RA 8RG t* 64 *0
3T' 1 AA t toIiI

.3 | StART * to

.IS C.ONS (0to :

-35.- L

- .- r- -~



APPENDIX XIII

"TABLE XIm-3- COMPILER PROGRAM (Continued)

Time

Item hbstruction koImarks P R

GLNO3 +19 BRG a+ 1b 6 B RDM or STB 13 34
(CoUt) +?,0 BRO & + 17 6 A RDM or STB 33 34

+21 LoI c + I ADDLISK 10 I3

+22 LO a + 2 ArDMSK 10 !I

+23 LOT & ÷19 + 21 RDW.I3 A add or STBB8 add 37 38

+24 L07 0+20 a + 22 RDM A add or STB A add 37 38

+25 ADD a + 3 oue OB+X+ 13 10 13

+26 ADD + + 3 two 1 1 t0 it

+2z ADD *+ 3 three i3 30 £

+ZB ADD a+ 3 four + 4 10 31

+29 ADD o 3 five + S 10 13

+30 ADD *+ 3 six + 6 .0 31

+31 ADD 0+ 3 "#Von + 7 o0 II
+32 STO a+ 14 a+ 3 ERG i 0+ 6 24 25

+33 STO 0+ 15 *+ .5 BRG i 40 + b Z 24

ý34 SrO a + 24 + 26 RDM ot STE A 4! 42

+35 S'l") a + 7 + 27 DOUBLi 19

+36 STO a+23 0+ 28 &DM or STB B 41 42

+37 STO a +7 1+ 29 DOUBLE is 19

+38 STO 0 + " + 30 MWT 3 9

+.3 STO 5o+ 9 0 + 31 CONS EXP ROUT is 19

+40 CONS ADD MSK

+41 CONS one I
442 CONS two - 3

+43 CONS three 1

+44 CONS four

+45 CONS five -

+4b CONS six I

+47 CONS seven 3

031 a SPa 0 + 5 HRGI 7

.+ j SPB 0 '+ 6 SRG a 7

.2 SPB as + ZZ 08+ 10b + 7

• STB 36 0 z - i'6- 4

LO a Q* I R IM0 t 0 1 11

G(13 S WP 0 -t% A of F oPerandl 7

. 1.03 INDMK to It

.4 CONS * I

.4O N S G i .• I

II

-4 -

""-- ..-. .-



APPENDIX XIII

TABLE XIII-3 - COMPILER PROGRAM (Continued)

Time
Item Instruction Remarks p

G33 : RDM RI RI RDM- 16 17
G33 RDM SI St STB- 16 17
GENO4 a SPB 0 0+ it (PL + J) 6 7

41 PSa 0 &+ 12 N(PL + j) B operand 6 7
*2 PSP 0 a@ 13 N(N(PL + j) A operand 6 7
+3 Spa 0 18 OB+ix OBix 6 7
+4 SPB 208 1+14 OP0code 6 7

+f, RIM 0 1+0 STO 14 Is
+6 RIM I 0+ 10 DOUBLF Its i
+7 ADD &+ 3 ,ne OB+ie+ 1 10 it

+8 ADD *÷ 3 two +2 10 11
+9 ADD a+ 3 three + 3 10 31

410 "iHS a +4 a+11 10 11
411 CONS )CT - I
+12 LO a+ 2 AJJDMSK A address 10 13
+13 LY' a + 1 ADDMSK B address 10 11
+14 STB 72 0+8 STO1B +IZ4 OB + 0+ 3 14 is
+15 L07 a + 13 4 + 14 is 19
+16 STO a+ 14 a+3 STO i*+2 is+3 1s 19

+17 STO 0+6 4f 7 DOUBLE 16 19
+18 STO 0 + 12 a + 8 A address 34 IS
+19 STO + 13 @+9 B address 14 i5

+20 CONS one
fZ1 CONS two

+Z2 CONS threo

+23 CONS ADDM.SK

ABS SP8 72 a1 + 6 7

,b SPa 0 a + 9 - --O i0 3 6 T

+2 SPa 0 * 10 - - -0519 4 6 7
*3 SpB 0 + 6 S3- 223 6 7

#4 LO .3 0, + I STS U )O * +I to:S j -0 * I It-Z 1ý * a0 I
*6 LOT 0 10 v a tO 4 4 10 33

N V S 74 *• 0,

:1 Wit 0 9

0 10#4 S* .0 * j 30

OCT I rAD .I

I Dot. 1I,. r

f_-

JEF



APPENDIX XIII

TABLE XMl-3 - COMPILER PROGRAM (Cntinued)

Time

Item Instructior. Remarks p- A

O•(f 3 FSU 0.+2 10+ 3
(coat) 4 DOUBLE

S FD"I ia + 2 10+ 3
6 DOUBLE

7 FMP i@ + 2 03 + I

* DOUBLE

r STC if + 2 1*+ 3 EQUAL

Ic DOUBLE

* L06 iX + 2 iX + 3 ABS

11 L06 :X * z X + 4

+2 STD 3 +
+3 A adroses
+4 A + I address

a LIC IX 3 iX + 3 NEC

'I LI0 iX + I iX+ 4

+2 CONS 0

43 A address
+4 A , I address

a BRG i$+6 I EXP
+1 BRG LO+6 2

+2 RAM A address
• 3 DOUBLE

+4 ROM B address

";5 DOUBLE

+6 MWT

+7 CONS EXP ROUT

4354-



APPENDIX XIII

TABLE XIII-4 - OBJECT PROGRAM

Address Instruction Remarks

OB + 50 FMP 70+2 70+3 A , B

+1 Double

+2 RDM A

+3 RDM B

OB + 9g FMP 90+2 90+3 C . D

+1 Double

+2 RDM C

+3 RDM D

OB , 70 FAD 120+2 120+3 A & B C D

+1 Double

+2 STB 0 70 A * B

+3 STB 0 90 C * D

OB 0 15 BRG 150+6 1 E a F

+1 BRG 150+6 2

+2 RDM E
+3 Double

+4 RDM F

+5 Double

+6 MWT 15++7

+7 CONS Exprout

OB + 180 L06 180+2 180+3 ABS I

+1 LO6 180+2 180+4

4'2 STB 223 180+ 3

4.3 RDM I
+4 RDM I + I

OB + 170 FAD 170+2 170 +3 E t F+ADSI

+1 Double
+2 STB 0 ISO

+3 STB 0 Is*

Oa + 120 FMP 120+2 120 +3 (A a B C• 0) (EtA AS1)

+1 Dou-le

+2 STB 0 7X

+3 STB 0 17X

05 + 40 BRG 240 * 6 I J t K

+1 ERG 240+6 2

+2 BRG j

÷3 Double

-355..

4Jt



APPENDIX XIUOt

'TABLE XIII-4,- OBJECT PROGRAM (Continued)

Address Instruction Remarks

+4 RDM K

+5 Double

+6 MWT 240+7

+7 CONS Exprout

OB+280 FDV 280+2 289+ 3 L/M

+1 Double

+2 RDM L

+3 RDM M

OB +260 FSU 260 2 260 3 J t K -L/M

+1 Double

+2 STB 0 240

+3 STB 0 280

Ob + 230 LI0 230+ 3 230+ 3 NEG P

+1 ,10 230+4 230+4

+2 CONS 0

+3 RDM P

+4 RDM P + 1

OH + 370 PMP 270+ 2 370+ 3 Q * R

+1 Double

+2 RDM Q
,3 RDM R

OB+ 350 FAD 350+2 350+ 3 NEGP+Q * R

+1 Double

+2 STB 0 230

+3 STB 0 370
05 + 510 FDV 310 + 2 310+ 3 ( tK - L./WI/(NEG3 P +Q •R)
+1 Double

+2 SVB 0

43 STB 0 350

OB a 210 F'AD .10+ 2 214 + ]I ,A ' B+C , )I * (E I F + ABS I)

*1 Double
S(3 J K -L,/M)I!NEG P (1 Q R)

ýiT6 a 10
o 2S'I te.0

C-O35

- ~..,$
a mu Nlm m| m mlm l I I III HN I IP q ~l n u umm' 4ul • • nmna n uuan u •• , u u • n m m n nm muu



'A.

APPENDIX XIV - PROGRAMMING MANUAL FOR MACHINE II

INTRODUCTION

The Machine I parallel processor described in Appendix V! has some dis-

advantages, While rmany tasks could be run concurrently, each task is

sequential and communication between tasks is difficult.

In Machine II, each task (instruction block) can have concurrently oper-

ating instructions and communication between tasks is better. Machine I

has the advantage of better machine utilization since a programmer can au-

tomatically introduce concurrency without spending time setting up new

tasks. Machine I1 has the advantage of transferring results between tasks

without memory references.

Instructions generally consist of an operaticn code and two operand fields.

When a task is started, any instruction in the task will be performed when

its cperandt are available; thus many instructions in a task could be exe-

cuted simultaneously.

2. BRIEF DESCRIPTION OF MACHINE

Machine II consists of a multiaccess merging-separating memory (see

Appendices VI and VII) connected to I/0 devices and a multiprocessor con-

trol unit (MPC) as diagrammed in Figure XIV-I. The MPC stores L large

set oi instructions (cn the order of 1000) and fetches their operands and

leeds them to procetsors tor execution. The number of processors may

be in the hundreds. the channel between the MPC and the xv,etmory iu

large enough to permit the tz-ratsier of 10,4 words at one time.

1. WORD lORMATS

in Cte,.iorv. A word of a 24 -bit Address and a SZ-bit data fheld.

-357--

mmml~mm ml mmmm m mm • u mu ( n mm maam mmm mmlmml



APPENDIX XIV_________ _____

MEMORY
MULTIACCESSPRCSO
MERGING-
SEPARATING MULTIPROCESSOR PROCESSOR

Figure XIV-1 I Block Diagram of Machine II

Programming is done with 16-bit addresses. Up to 256 different pro-

grams may be running concurrently, each with its own protected set of

65. 536 addresses. A program cannot reference another's address ex-

cept through the monitor. A given address may be empty, contain one

word, or contaiii several words. When more than one word is at the

same address, they are arranged in order of their contents. A normal

reference to atn address will provide the word whose contents is the least

of all words at the address, A special threshold memory reference al-

lows the retrieval of the least word at an address whose contents are not

below a specified threshold. This allows instant retrieval of an item in a
table.

An integer is in the rangej I - 2 31to 2 31- I and is written in normal

ONE*-comnplement form (sign bit is 0 for positive numbers. I for nega-

tive numbers). Several integers at the same address will be ordered

with positive integers firfi in incregasing order then negative integers in

decreasing order of magnitude. Certain integers are shown "elow:

.358 -

,- - ~ - - __ - -i u."*h



APPENDIX XIV

Integer Representation

131
23 - 1 0111 1111 1111 1111 1111 1111 1111 1111

231 _-2 0111 1111 I111 1111 1111 lIII 1111 1110

2 0000 0000 O00Qc 0000 0000 0000 0000 0010

1 0000 0000 0000 0000 0000 0000 0000 0001

+0 0000 0000 0000 0000 0000 0000 0000 0000
-1 IIII 1lll 111l IIII IIII lIII lIII III0
-2 1111 1111 1111 1111 1111 1111 1111 1101

2 - 231 1000 0000 0000 0000 0000 0000 0000 0001

I - 231 1000 0000 0000 0000 0000 0000 0000 0000

A floati.ng-point number consists of a fraction sign, an I 1-bit exponent

(the fractio'n is multiplied by any power of 2 between 2'1024 and 2 023)

and a 20-bit fraction. A double-length floating-point number has a 52-bit

fraction. A positive floating-point number has a fraction sign of 0 and

the exponent is biased; for example, 0 represents2"O. The fraction is

in the range -1 to 1. A negative floating-point number is formed by com-

p-ementing every bit (sign, exponent, and fraction). Certain single-length

floating-point numbers are shown on the. next page. Note that with this

representation a table of positive normalized floating-point numbers can

be put in order simply by putting their representations in order; this for-

mat allows threshold starches on positive normalized floating-point num-

hers. Negative normalized floating-point numbers will be put in descend-

ing o6rder.

Instructions are read into the MPC in blocks of from I to 256 instructions

apiece,. An instruction block is stored at one address. The instructiott

format is:

LNumber Operation code A B
(8 bits) (8 bits) (8 bits) (8 bits)

-359-

P@



I

$ APPENDIX XIV

Number Representation (single-length)

I023
0.5 X 2 0111 lll 1111 1000 0000 0000 0000 0000

0.5 X 21 0100 0000 0001 1000 0000 0000 0000 0000
0.5 X 20 0100 0000 0000 1000 0000 0000 0000 0000

0.5 X 2" 1 Oll 1111 1111 1000 0000 0000 0000 0000

0.5 X 2"1024 0000 0000 0000 1000 0000 0000 0000 0000

0 0000 0000 0000 0000 0000 0000 0000 0000

-0.5 X z1024 1111 111 Ill! 0111 1111 1111 1111 1111

-0.5 X 2'1 1100 0000 0000 0111 1111 1111 1111 1111

-0.5 X 20 1011 11ll 1111 0111 1111 1111 1111 1111

-0.5 X 2 1011 1111 1110 0111 1111 1111 1111 1111
1023

-0.5 X 2 1000 0000 0000 0111 1111 1111 1111 1111

The number identifies the instruction in the block; each instruction in a

block is given a unique number from 0 to 255. The operation code identi-

fies the operation while A and B usually identify operands.

An instruction block is read into the MPC in one piece and the instructions

in it may be executed in any order (any instruction is exer- ted whenever

the requisite rnumber of ope.ands are available), The operands for in-

structions may be memory words, results of other instructions in the

same block, results of instructions in the block that caused a block to be

read into the MPC, or results of instructions in any block that a block

causes to be read .nato the MPC. Several in.struction blocks may be in the

MPC at one time.

4. OPERATIONS

a. General

Each operation specifies one or two operands and -as options that ollow

-3r)0.

!!~



APPENDIX XIV

erasure of its operands. When the result of an operation is being used by

several other operations, one and only one of the other operations should

erase it, as discussed under Item 4, i below.

b. Arithmetic and Logic

(1) Operai.ds

The operands in any of these operations are the results of the operations

numbered a and b in the same block as the operation.

(2) Fixed Point

ADD Result is (a) ' (b)

SUB Result is (a) - (b)

MPY Result is (a) (b)

DVD Resvit is (a) / (b)

MOD Result is (a) Mod (b)

Arithmetic is done modulo 2 3- 1. Negative zeros are never generated.

The operation ADD, A is similar to ADD except that the result in (a) is

erased. This also is true for ADD, B and ADD, AB and all other fixed-

point operations. There are a total of 20 fixed-point operations. O\er-

flows will be flagged.

(c) Floating Point

FAD (a) + (b)

FSU (a) - (b)

FMP (a) ': (b)

YDV (a) (b)

Operands and results are normal %ingle-length floating-point numbers.

Each operation has three erase oplons indicate'J, for example. by FAD,

A; F'AD, B; FAD, AB, which cause erastire of (a). of (b) or of (a) and (b).

-I-----3• -

Sm mm m. . . . .



APPENDIX XIV

respectively. There are a total of 16 floating-point operations. Over-

flows will be flagged.

(4) Double-Length Floating.Point

Any of the four floating-point operations may be made double-length by

putting the operation DOUBLE in the instruction following the single-

length operation; if DOUBLE is numbered n + 1, the single-length oper-

ation is numbered n. The continuation of the double-length result is

numbered the same as the double operation. As an example, the pro-

gram

100 FAD, A 3 6

101 DOUBLE 0 0

would treat the results numbered 3 and 4 as the A .operan, the results

numbered 6 and 7 as the B operand, and would numbe:- the resultant sum

as 100 and 101. The erase A option causes erasure of the results num-

bered 3 and 4. There is one double operation.

(5) Logic

The logic operations combine the corresponding bits of A and B with any

of the 16 possible Boolean functions of two variables. They are listed at

the top of the next page.

Each of these operations has erase options; for example, LOO, A or LOO,

B or LOO, AB, which cause erasure of A, of B, or of A and B, respectively.

There are 64 logic operations.

(6) Conversions

FXFL (Fixed-to-Floating) - The fixed point result numbered a is converted

to floating point. Field b is unused. If this operation precedes a double

operation, a double-length floating point number is created. FXFL, A

erases the result numbered a.

FLFX (Floating-to-Fixed) - The floating-point result numbered a is

.36z.

""L

1K



APPENDIX XIV

LOO 0 (zeros)

LOl (A) A (B) (and)

L02 (A) A (B)

L03 (A)

L04 ( A) A (B)

L05 (B)

L06 (A) * (B) (exclusive or)

L07 (A) v (B) (or)

LlO (A) A (R)

LIi (A) 0 (B)

L1Z (11)

L13 (A) v (B)

L14 (X)

L15 ( y) v (B)

L16 ( v) v (I)

LI7 I (ones)

converted to fixed-point. Overflow is flagged. FLFX, A erases the

operand a.

DLFX (Double-Lengch Floating-to-Fixed) - The double-length result

numbered a and a + I is converted to fixed-point. Overflow is flagged.

DLFX, A erases operands a and a + 1.

(7) Conclusions

In each of thpse oporations, the operands are results of other instruc-

tions in the samne block and the result is left numbered the same as the

instruction that caused it.

-36!-

___________________________________ '



APPENDIX XIV

c. Shift

in the shift operations, the a field contains a shift constant in the range

0 to 255. A shift constant in the range 0 to 63 means a left-end-around

shift of from 0 to 63 places. A shift constant in the range 64 to 127

means a left end-off, shift of from 0 to 63 places (zeros are written into

the right side of the result). A shift constant in the range 128 to 191

means a left end-off shift of 0 to 63 places (ones are written into the right

side of the result). .\ shift constant in the range 192 to 255 means a right

end-off shift (the sign bit is written into the left side of the result).

In summary:

0 a - 63 Shift left end-around a places,

64 - a 127 Shift left end-off a-64 places (write zeros)

128 - a - 191 Shift left end-off a-128 places (write ones)

192 = a - 255 Shift right end-off a-19Ž. places (write sign)

The operand is specified in the b field. It is always left alone or erased

and the result of the shift instruction is the shifted operand. For the STB

operation, the operand is in the same block as the instruction (Shift This

Block). For the SPB operation, the operand is numbered b in the previous

block (Shift Previowis Block), (The previous blockisthat block that :on-

tained the start instruction that started this black.) For the SPR oper-

ation, the operand is in the previo,is block b places relative ,:o the start

instruction that started this t,lock (Shift Precious Relative) (b is added to

the number of the start instruction modulo 256). The STB, B; SPB, B;

and SPR. B operations cause erasure of the operand.

Any shift may be made a double -length shift by following the instruction

with a DOUBLE operation. As an example, the progrnam

43 SPR, i 70 13

44 DOOUBLE 0 0

wwtld tAke the results oW the tmtr•wcun., ii the previous block, which 4tre

-- -t,4

i .... •-



APPENDIX XIV

the 13th and 14th instructions following the start instruction, erase them,

put them together in a double-length word (the 13th result to the left),

shift them left end-off 6 places (6 places on the left are lost, 6 places in

the right half travel to the left half and 6 zero. are written in the right

half), then number the resultant halves as 43 and 44 in this block.

In all left shift operations, the result is ilagged if overflow occurs.

The shift operations SPB and SPR allow a block to retrieve an item from

the block that started it. The BRING operation (BRG) allows a block to

retrieve an item from a block it starts. The a field identifies the block

by specifying the start instruction in this ;'. ck which started the block

containing the op,.rand. The b field specifies the number of the result

in that block. The result of the BRG is the particular operand. BRG, B

erases the operand in the started block.

Field a of a BRG or BRG, B operation may refer to a conditional start in-

structionthatwas not satisfied. Inthis case, the first start instruction or

satisfied conditional start instruction whose number :i above a is selected

and reference rn-de to the block -t started. If no such start exists, an in-

terrupt occurs.

e. Memory References

(1) RDM (Read Memory)

This has as a result the word in memory whose address is (a. b) (a and b

are read as one 16-bit field to form the memory address). U the.- is

more then one word at the address, the one whose contents io least is

c1Nosen. RDM, M erases the word in memory.

(2) RIM (Read Indirect Memory)

The lb right-most bits of the result b in this block is used as the memory

address after being incremented by an amount !rom -128 to 127. Th. in-

crement is in the a 1,rld of thi, instruction. RIM, B erases thA base

.365-

SIj



APPENDIX XIV

memory address, RIM, M erases the word in memory, and RIM, BM

erases both.

(3) THS (Threshold Search)

This has as a result the word in m.mory in a given add-sus whose con-

tents are just above a threshold. The memnory add-:ess is specified by the

right-most 16 bits of the result in this block numbered b. The threshold

is t1he result .umbere•i a.

THS, M erases the memory word, THS, A eras-s the result a in this

block, and THS, B erases the result b in this block. THS, AB; THS,

AM; THS, ABM; and THS, BM eras, the indicated combinations of these

items.

In THS, lack of the desired memory word cuses a search in the higher

memory addresses with the retrizval of the memoky word whose contents

is the least in the first nonempty memory address. This item will be

erased if the memory erase option is spezified. Care shoula be exer-

cised to prevent unwanted erasures. The result of a THS is flagged if it

comes from an address different from the specified address.

(4) STO (Store)

This causes the storing of a result into memory. The mrnemory address

is the right-most I Q bite of the result nurnbered b. Thn result to be store,1

Is that number-ed a. S7O, A erases the a-eul:, STO, B erases the b.

resuIt, and STO, AS er'ases both. The store operatior, s themselves have

no results. Nu manmory ".rds are over written; any words at the speci-

fied memory address will' K ept and th.e ne•w memory word added to that

address.

f. Instruction Blck Sitae'.

(1) START

This causse an ;nstructuon block to be put in the MPC for execution. The

memory address ot the block is specified by the right-most 16 bite of the

-366-

A�



APPENDIX XIV

result numbered b in this block. START B is similar to START except

that the result numbered b is erased,

(2) Conditional Starts

The condition of a result in a block can be used to start another biock with

the sa~ne priority, The a field specifies the result to be tested. The

memory address of the block t. be started is contained in the right-rmost

16 bits of the result numbered L, The conditional starts are:

GTZ star (a) > 0

LTZ start if (a) < 0

GTE start if (a) t 0

LTE start if (a) - 0

EQZ start if (a) = 0

NEQ start if (a) • 0

FLG start if (a) is flagged

UNF start if (a) is unflagged

Each conditional start has erase options; for example, GTZ, A erases

result a, GTZ, B erases resul. b, and GTZ, AB erases both. These

erasures occur whether the condition ii satisfied or not.

(3) SUPER (Supervisor)

This operation brings a supervisory routine into the MPC. Tne a and b

fields specify which routine. The routine may expect to obtain certain

parameters from results stored relative to the SUPER instruction. Su-

pervisory routines are allowed certain privileged operations denied nor-

mal routines.

(4) M WAIT

This is an wuconditional start instruction except that it •e not executed

until all memory operations (RDM, RIM, THS, STO) in this block have

been executed.

-367-

Nigr-



APPENDIX XIV

EPB (Erase Previous Block

This causes all results in the previous block between and including a and

b to be erased. EPR (Erase Previous Block Relative) is similar except

a and b are relative to the start instruction that started this block.

h. CONST Constant

The operation CONST has as a result the number stored in the a and b

fields. Sixteen zeros are inserted in the left-most places.

i. Erasures

If a result is used by only one operation, that operation should erase it.

If used more than once, then it should be erased by (1 the highest num..

bered operation in the lowest priority block started by the highest num-

bered atart instruction that uses it; or if no started bluck uses it, then

(Z) the highest numbered opetation in the same block that uses it, or if no

operation in the block uses it, then (3) the highest numbered operation in

the previous block that uses it.

5. EXAMPLE PROGRAMS

a. POLY

POLY evaluates a fouzth-degree polynomial in X using double-length

floating-point arithrnetic. The coefficients c O. C1 1 C2 1 c3' c 4 are stored

in POLN + 1 through POLY + 10. The variable X is obtained from the

calling block The entry should leave the left-half of X two results ahead

of the START POLY instruction and the right-half ot X one result ahead.

POLY erases X and leaves CO + CIX + cX2 + c3X3 + c4X4 in results I

and 2.

In Figure XIV.-2. Instructions 3 through 14 are executed first to obtain

the cuctficentvs and X, Instructions 3 and 4 erase X in the calling pro-

g-'ar. Instructions i5 Ihrough 20 are e-ecuted next, On the third step,

Inutrttcttons 21 through 28 4 re executed. On the fourth step. Instructions

- . ... .. .... . . 7= .'== ,



APPENDIX XIV

ADDRESS NO. OP A a RESULT

P LY I FAD, A .. 2 . 3..

I OOJULE 0 00 0 2 s 4

_-- -- SPR,B 0 o 1°
S ROM POLY+ I

6 ROM POLYi -ý 0

a ROM POLY + 4

9I ROM POLY+ 5

10 ROM P OLYf* S
11,I RDM- POLY + ? |C5

12 RDM POLY + 8

13 ROM POLY + 9 c

14 ROM POLY + 10 4

16 DOUBLE 0 0

17 FMP.A - X
Is_•_ DOUBLE 0 1; 1

19 FMP,A 13 - X

20 OCUELE 0 0 4

21 FAD, AS S C 41?

?2 DOUBLE 0 - o

25 FMP, A c 1S n 2

24 DOUBLE 1 0 0 2

25 VMPAB 3 15 3

2i DOUBLE 0 0

27 FAD,AS 1 19

-- 6- OcuidE 0, 3

0 FA. 2 O +C XA

30 - DOUBLE 0 0

31 FMP. AU 25 27 )}x +CX
12 DOUBLE C

POLY 4 1
C

r-t ÷2 C

I O.Y + 4

POý.ýPOLY + 4

POLY - 7

C

PO#.Y + 0 3

POLY * I
C

POLY # 10

Figure YIV-Z - Example of POL• Program

-369-



APPENDIX XIV

TREE I SPR. 6 0 2 N
-9--.

2 SPAR, a 0 1 PPOG

$ CONST 0 I
4 START, • 0 5 START TREE + I WITH IN.EX I

CONST TREE + I

TREI + I I SPR 0 - 1
2 STAAT -1 4 START PROG WITH INDEX I

S s"R, a 0 -S N
4 SPAN, 0 I 2 PROG
5 ¥IPR 0 - I I

6 LTZ • 11| START TREE + 2 OF 21 < N

7 EQZa I s 10 START TREE + S IF 21 = N
a GTZ, AU 13 11 START TREC 4 4 IF 21 j> N

S CONST TREE + 2

10 CONST TREE + 3
11 CONST TREE* 4

19 SPR, • - 21

L SUI-. A 12 3 21- '-

TRIE+2 I SPA 0 I 3 N

I SPR 0 "2 ROG

3 SPR 1 - 21

4 START 0 9 START TREE • I WITH INDEX 21

S SPR, 3 0 - 3  
N

E SPRI a 0 -2 PROG
? SPR, • 123 - 1 2¶ +I

S START, 0 • 9 START TREE + 1 WITH INDEX 21 + 1

t CONST TREE - -

TREE + I SPRA a 0 T-4 N

2 SPR, a 0 a |ROG

I 4PRS 0 1 a 21

4 START, S a START TREE * I WITH INOEX aI
-5 CONST TREEI C

ITREE.€ONE T

Figure XIV-3 - Example of TREE Program

-370-



APPENDIX XIV

29 through 32 are executed. On the fifth step, Instructions 1 and 2 are

executed.

b. TREE

TREE (see Figure XIV-3) is a program that will cause N executions of a

program specified as PROG, each execution with a different index I, I =

1, 2, . . . , N. PROG should be written to expect I one location ahead

of its start instruction and it should erase I.

TREE is entered with

a - 2: N

a - I: PROG

a: START TREE

and it erases N and PROG.

TREE consists of five instruction blocks, TREE, TREE + 1, .

TREE + 4, and 33 instructions.

6. CONCLUSIONS

The normal operations of a multiprocessor design have been described.

There will also be other operations for use by the monitor. This ma-

chine has the advantage of having a machine language wherein parallel

operations can be expressed and executed easily and communication be-

tween concurrently operating portions of the programs can be accomplished.

7. OPERATIONS THAT LEAVE A RESULT

a. Fixed Point

ADD ADD, A ADD, B ADD, AB

SUB SUB, A SUB, B SUB, AB

MPY MPY, A MPY, B MPY, AB

DVD DVD. A DVD, B DVD, AB

.37).



APPENDIX XIV

MOD MOD, A MOD, B MOD, AB

FLFX FLFX, A DLFX DLFX, A

b. Floating Point (Can Be Double Length)

FAD FAD, A FAD, B FAD, AB

FSU FSU, A FSU, B FSU, AB

FMP FMP, A FMP, B FMP, AB

FDV FDV, A FDV, B FDV, AB

FXFL FXFL, A

C. Logic

LOO L00, A LOO, B LOO, AB

L01 LO1, A LO1, B L01, AB

L02 L02, A LOZ, B LOZ, AB

L03 L03, A L03, B L03, AB

L04 L04, A L04, B L04, AB

L05 L05, A L05, B L05, AB

L06 L06, A L06, B L06, AB

L07 L07, A L07, B L07, AB

LIO L10, A L10, B L10, AB

LII 1,11, A LII, B LII. AF,

LIZ LI2, A LIZ, B LIZ, Ab

L13 LI3, A LI3, B L13, A13

L14 L14, A L14, B L14, AB

L15 L15, A L15, B L15, AB

L16 Li6, A LI6, B L16, 'AB

L17 L17, A LI7, B LI ?, AB

d. Shift (Can Be Double Length)

STB STB, li

SPB SPB. B

SPR SPR, B

-372-

--•jI



APPENDIX XIV

BRG BRG, B

f. Special

DOUBLE

CONST

.. Memory

RDM RDM, M

RIM RiM, M RIM, B RIM, BM

THS THS, A THS, B THS, AB

THS, M THS, AM THS, BM THS, ABM

8. OPERATIONS THAT LEAVE NO RESULT

a. Erases

EPB EPR

b. Store

STO STO, A STO, B STO, AB

c. Starts

START SUPER M WAIT START, B

Q fZ GTZ, A GTZ, B GTZ, AB

LTZ LTZ, A LTZ, B LTZ, AB

GTE GTE, A GTE, B GTE, AB

LTE LTE, A LTE, B LTE. AB

EQZ EQZ, A EQZ, B EQZ, AB

NEQ NEQ, A NEQ, B NEQ, AB

FLG FLG. A FLG, B FLG, AB

UNF UNF, A UNF, B UNF, AB

-373- [

w-4



APPENDIX XV - BASIC ORGANIZATION OF MACHINE 11

1. INTRODUCTION

Appendix VI describes a parallel processor organization referred to as

Machine I. Machine II was designed to have a more dynamic processor

assignment scheme, automatic concurrency within tasks as well as con-

current tasks, and a multiprogramming dynamic priority capability. Ap-

pendix XIV describes the machine language and programming considera-

-• tions; this appendix describes the hardware implementation.

2. GENERAL DESCRIPTION

Figure XV- I is a block diagram of Machine II. The memory is a multi-

access parallel merging-separating memory (see Appendixes VI and VII)

S~TASK

I ...I~l•t

L _____ CONTROL ____

i i I I Ull Ills _2 ...ll

I Figure XV-l - Block Diagram of Machine 11

.-37S-

-|- • I



APPENDIX XV

with many (on the order of 1000) parallel channels to the multiprocessor

control. It is needed as a store capable of reading and writing many items

of data simultaneously so that the machine is not memory-limited.

The I/O devices consist of backup memories (core storage, disk storage,

drum storage, tape scorage, etc.) and normal I/O units (card equipment,

printers, consoles, channels to other machines, etc, ). The number of

1/0 channels can be in the hundreds and all channels may be ope,:.ating at

the same time to give the machine a high 1/0 data rate. The faster !/O

units can be connected to more than one I/O channel so more than one

word couid be transferred in any cne cycle.

Each processor is a simple three-register arithmetic unit capable of per-

forming the arithmetic-logic operations in the instruction set. Double-

length operations are performed by connecting two adjacent processors.

The result of each operation is transferred back to the MPC immediately

after execution, freeing the processor f!-,r another instruction that may

come from a different program; this rule simplifi•.s the implementation

of interrupt, multiprogramming, recovery from processor failure, and

other matters in the machine. The num-,ber of processors may be in the

hundreds.

The task level computer is used to implement a dynamic task prioJ.ty

scheme wherein each task can be assigned a certain percentage of ma-

chineo capacityý and is given execu1tion time at regular intervals.

The memory request sorter (MRS) receives read aid write requests from

the I/O devices and processors. orders them by address and daca fields,

and transfers them to th,ý memo,-y.

The multiprocessor control (NIPC) L's the heart of the richine. In one

sense, the %'PC acts its a swit1',beard. connectin,,, all the various parts

of the machine together *nd allow,,inr lundreds of data transfers to take

place simultaneously. In anothe,- seri e, it acts as a flexible buffer match-

ing the dit.i rates in all the datat trtisfers. !n still another sense. it 'acts

mtv.



APPENDIX XV

as an extensive "instruction look-ahead" unit arranging for the retrieval

of instruction blocks and operands, matching the operands to their instruc-

tions, dispatching the instruction-operand sets to processors, and storing

intermediate results. The MPC is a sorting memory with certain added

features.

3. MEMORY

The multiaccess parallel merging-separating memory is essentially that

describe(' in Appendix VII with a few modifications. The format of a word

in mernor y is shown in Figure XV-2.

The X and Y fields designate six different kinds of items. The memory

cycle has eight steps:

1. Input new words, read requests, and read and erase

requests

2. Merge

3. Flag requests and associated memory words

4. Separate flagged items

5. Present requested words for output

6. Merge

7. Flag reques's and memory words to be erased

8. Separate: flagged items and erase thcnL.

Figure XV-2 - Memory Word Format

V-=;

•'" -- .. milll all.-



APPENDIX XV

The memory cycle is longer than described in Appendix VII becaune of the

need for reading blocks of data (such as instruction blocks). With blocks

of data, there is no convenient method for combining the reading and the

erasing functions; therefore, in Step 5 the data are read but not erased

and at the end of Step 8 the data are erased by overwriting it with new r'.-

quests in Step 1 of the next cycle. An approximate cycle time can be ob-

tained by assuming 150 nsec per cl-,ck period except during separates,

wher- 250 nse, should be assumed. Using these assumptions and the

fact that the even-ruumbered steps take n cl. "- pulses (for a 2 _n-word

memory), a cycle time of 0. 8n + 0. 6 psec is obtainec; for example, a

32, 76F-word memory has a ,_ycle time of about 12. 6 jisec. In each cycle,
1000 items or so may be -etricvea.

Thert. are six types of itemns in memory designated with the following X

and Y fields:

x Y

0 0000 - Multiple read request (lower limit)

0001 - Multiple read and erase request (lower lFmit)

0 0010 Read request

0 091i -1 :.ead and erase request

0 0100 - Normal memory word

1 0000 - Upper limit

Each request has a corres,'onding upper4imit.

At the start o. a cycle, the MRS presents to ti~e lower parc of m".!rn.-rv till

inverse-ordered set of requeots, upp.r litmits, and new memory words

(Step I). During Stejp 2, these are mered with existing metrory wor. I
During Step 3, the following iteme are flagged jv setting their leftmost

Y-field bits:

I. E•ch request and upper limit

-378-



APPENDIX XV

2. Each memory word intervening between a multiple

request and an upper limit

3. Each memory word that is directly above a request

During Step 4, the flagged items are separated from the unflagged and

sent to the lower part cf memory. During Step 5, the MPC reads the

flagged items. If the number of flagged items exceeds the channel ca-

pacity, the procedure is different: the upermost upper limit in the chan-

nel is picked as a dividing point and it and all words higher than it have

their flags reset while all other words are read by the MPC (the words

whose flags were reset will remain in memory for the next memory cy-

cleW. During Step 6, all items are merged. During Step 7, the flags of

any unerased memory words are reset. During Step 8, all flagged items

are separated from the unflagged, sent to the lower part of memory, and

changed to all-zero memory words (0100 in the Y field) or overwritten

with new requests from the MRS.

4. PROCESSORS

Each processor is a three-register arithmetic unit and an instruction

register. The instruction register contains the operation code and task

identification. In each cycle, the MPC-processor interface can transfer

the following.

1. Operand A from MPC to processor

2. Operand B from MPC to processor

3. Operation code and program identification (packed

into one word) from MPC to prncessor

4. Result of last operation from processor to MPC

During each cycle, the processor performs the indicated operation.

Double-length operations use two adjacent processors. On* receives

the upper halves of the operations and a specially flagged code (to in-

di.ate upper ha.if), the other receives the lower halves and a specially

-379-

• • • • pt



APPENDIX XV

flagged operation code (to indicate lower ha . connection between ad-

jacent processors is used for the necessary interchange of data between

the processors. 'The task identification is fed to the task level computer

(see 5. below) A memory request is transferred to the memory request

sorter (see 6. below).

5. TASK LEVEL COMPUTER

When a computer system is being time-shared by several tasks, a means

is needed. to transfer control between the tasks. The means could be hard-

ware or software or a combination of the tv a. In a system with more than

one proces.sor, the implementation is complicated by the fact that a given

task may be using a dynamic number of processors; to keep the processors

busy, the means for processor assignment should be fast.

In Machine II, all instructions ready for execution are kept in a list in the

MPC ordered by "task levels. " The task level is a number assigned to an

instruction block upon entry into the MPC; it governs the priority oi the

block relative to all other blocks in the MPC. Blocks with lower task lev-

els are preferred to those with higher task levels. On each execution cy-

cle, all processors interrogate Lhe instruction list: this keeps the proces-

sors busy regardless of the changes in any one task.

The task level computer receives task identifications from the processors

and uses this information to keep track of machine usage and to update task

levels. The updated task levels effect the read-in priorities of new in--

struLction blocks. TheŽ example below illustrates the scherme.

Let Machine II h:.ve four tasks, A, B, C, And J, and suppose it is desired

to give rask A 50 pe-cent of the machine ci.pacily, Task B 30 percent.

lask C 10 p,,r'ent. and Task D 10 percent, Give each task an integer, A,

¶ taat is inversel, rel,,ted to Jts desired capacity. A suitable set of W's in

this exarnpl. !s A7 A 5. A 1. A - 15. rhe task ,dentifi.

cation .ontains A a, a subfield

-low

AV



L
APPENDIX XV

On each execution cycle, the task level computer increments each task

level by the product of the L for the task and the number of processors

used by the task. This information is contained in the task identifica-

tions fed from the processors. This operation causes the task level for

a task to increase at a rate proportional to its current machine usage

and its A. The task levels govern the priority of the tasks in future com-

petitions; this has the effect of keeping the task levels together since the

tasks with lower levels will win future competitions, causing their levels

to increase up to the higher task levels.

The example illustrates this. Let Machine II have 150 processors and

assume that all tasks want to use 100 processors i' given the chance. Ta-

ble XV..1 shows the task levels at successive execution cycles assuming

a given initial condition. Here, Machine II is used as follows:

Task A, 1050 processor executions (50 percent)

Task B, 650 processor executions (31 percent)

Task C, 200 processor executions (9. 5 percent)

Task D, 200 processor executions (9. 5 percent)

these percentages are close to the desired percentages (50, 30, 10, and

10). Because Task B obtained slightly more capacity than desired, its

task level is higher so that .n future competitions it loses out. In the long

run, the actual machine usage approaches the desired machine usage.

All processors were kept busy each execution cycle (there were always

enough instructions for it to do), ihe machine usage approximated the de-

sired machine usage, and every task obtained access to the processors

once in awhile. Thus, ti.s seei.s like a good assignment p.-ocedure.

As time progresses, the task levels ircrease; to prevent overflow, a con-

stant is subtracted from all task levels whonever the higlest task level

overflows. The easiest constant to pick is the power of two %epresented

by the highest bit in the tatsk lhve& ;tcld.



APPENDIX XV

-ABLE XV-1 - TASK LEVELS AT SUCCESSIVE EXECUTION CYCLES

ASSUMING A GCIVEN INITIAL CONDITION

Task A (A = 3) Task B (6 5) Task C (L -- 15) Task D(L = 15)
Level Proce- sors LevelI Processors Level Processors Level Processors

0 00005

400 50 40300 100 400

550 450 50 1800 400 100

550 100 700 50 1300 400

850 500 (40 50 1800 1900

1150 100 1201 50 1800 1900

1450 100 1450 50 1800 1900

1750 10 1700 100 1800 1900

1900 50 21203 0 0 1800 100 1900

2050 50 1200 3300 1900 100

2200 100 1200 5100 3300 3400
2500 50 240 10000

203300 900

2650 100 2950 50 3300 340J

2950 100 3200 50 3300 3400

3250 1 3450 53300 3400

The task level computer corisists of a small sorting memory and a set of

serial adders. It sort-. thF task idnritifications arriving from the proces-
sors and wh,-n,-vcr two wu~rds for tht-- samc task are" sorted together, an

adder adds the two field5 and erascs onc of the word' . Over seve!ral cy-

ci '-, the necessary additiona, to e.,h task level word are made. The task
Slevel w~ords are" pt'riodic'-11lV ited to the MIPC Not(, that the ta~k level word

;s not updated insttilt.iieously but will usually lag bhind. the effec-t of this

is to introduce sor'- "overzhoctý in ths, proc ess but ti,,s will not have any

cifect over 0he hong r-in

Its2

70 -----



APPENDIX XV

6. MEMORY REQUEST SORTER

Because the memory is a merging-separating memory, the memory re-

quests must be presented to it in ordered fashion. The memory request

sorter (MRS) gathers all memory requests from the processors and I/o

units and orders them. The ordered set is presented to the memory dur-

ing Step 1 of its cycle.

Each write request is one word with the format shown in Figure XV-3.

When this is put in the memory, it will act as a normal memory word.

Each read request consists of two words, an upper limit and a lower

limit. The lower limit format shown in Figure XV-3 is where Y is the

code for the particular type of request (see Item 3) and the threshold is

all zeros except for a threshold search operation. The upper limit for-

mat shown in Figure XV-3 is where the MPC information indicates where

the data retrieved by the - ,quect should go in the MPC.

RRITE REQUES7

MiEMORY ADDRESS T IDA. TA 01 oo(24) 1(ol (32)

READ RW.VQEST. LOIER LI4:T

fMEMORY ADDRESS 10 THRESHOLD Y

(241 U1 _____________ (32I

RF 41) RQI IVtT, r PP. R LIW1T

MEcMOR'Y ADOOSS 0T MPC '%FORMA)I $ON 000

(I24) I)

Figure XV-3 - Memory ReQuest Formats

-383-

i,



APPENDIX XV

7. MULTIPROCESSOR CONTROL

a. General

The multiprocessor control (MPC) r•nsists of a sorting memory with logic

between adjacent words to cause certain changes in the words. There are

three kinds of interfaces with the MPC: 1/O devices, processors, and

memory channels. The uppermost end of the MPC is the I/O region with

each I/O device connected- to one word in the region. Immediately below

the I/O region is the processor region with each procqssor connected to

three consecutive words in the region. The lowermost end of the MPC is

the memory region with each memory channel connected to three consecu-

tive MPC words.

The MPC cycle consists of a sort phase during which ali MPC words are

sorted, and a transfer phase during which the interfaces read and/or write

into their corresponding words and certain words are interpreted and modi-

fications made.

The following five kinds of words are in the MPC: ot, 0. y, , , and E, with

the formats as shown in Figure XV-4. During the transfer phase, these

words are interpreted as follows.

a word: If the word above an a word is an f word with the

same A field, then move the F field of the a word into the A

and B fields of the same word and copy the C and H fields of

the f word into the C, F, and G fields. fhe C word is undis-

turbed while the a word is changed to an E word with new A,

B. and If fields,. If the word above is not an f word or does

not have the same A field, the a word is undisturbed.

S1 jvord: Suiw -a•, the a word except that the: ( word is erased

(C - 100 and all other iefds cleared to zeros).

1_ •orý: If the two .\o-ds tbove a N word are t words with the

san,e A fiell. set the leif- most bit of the \j word and the two f

word:, to I, otherwis., le4ve dil words alone.

- i 4.

• _' -. " II ; 4



L
APPENDIX XV

"" : Fi
(20) (28) (20)

_ 0 __ l(3) I I

A ' 0 F G
(20) (a) C (28) (20)

A H H
Y (20) (48)

[ A CLLI
(20) (I 38 ) (

00 H

(20) 1{I ' (48)

Figure XV-4 - Multiprocessor Control Word Formats

8 word: If the word above a 8 word is an £ word with thE

same A field, its left-most bit is set to 1 and the 8 word is

erased (C = 100 and all other fields cleared to zeros); other-

wi.se, set the left-most bit of the 8 word to 1.

C wc.:d: Not interpreted except in relation to adjacent 0, j3,

y, or 8 words.

The set of words in the MPC is divided into seven regions. The size of

these regions varies with time and one or more of them may be empty at

a particular time. The left most three bits of each wurd indicates the

region it is in. The regions are listed below with the three-bit codes.

I I I -/O region

110 - Procetsor region

101 - Rtsult region

Ol I - 1/O buffer -agion



APPENDIX XV

010 - Instruction region

001 - Pointer region

000 - Memory regiof,

As described above, the MPC interfaces are connected to the I/0 region,

processor region. and memory region. The size of the I/o region is fixed.

The operation of the MPC can be described by showing the actions that oc-

cur for words retrieved from memory (words from memory ma; be words

for output or instructions or data), words from I/O devices, and words

from processors.

b. Output Words

An output device requests a block of consecutive words from memory by

putting a read request or read and erase request in the MRS. The upper

limit of the request cotains the output device code. When the block ap-

pears on the mnemory interface to the MPC, an E word is written for each

word. The upper and lower limits become erased words while every word

in between has the output device code preceded by the I/O buffer region

code (011) written in the A field. The 24-bit memory address and the 32-

bit data field of this word are put in the B and H fields. These MPC words

travel to the I/O buffer region in the next sort phase.

The J/0 buffer region is ordered by 1/O device number, memory address,

and data field.

c. Channel Words

E-very 1/O channel (w'hether the I/O device is operdting or not) inserts into

its corresponding MPC word in the I10 region a fixed 8 word with the Ii/

buffer region code (011) aad the I/O device code in the ..\ fteld. Tihs word

trael's to the 1/0 buffer region and either tcrd- baick tht" Ieaist \ord in thye

device buffer, if there is one. or sends back itqelf -f there isn't one. III

,h•s way, each output device reads its own buffer.

* _ --- •.....



APPENDIX XV

I/0 units are started by putting specially flagged control words in their

buffers.

d. Instructions

The upper limit of an instruction-block read request contains the MPC

block assignment for the block, the program ID, and the MPC address

of the start instruction that caused it to be read in. When an instruction

block arrives over the memory - MPC interface, each word causes three

MPC words to be formed. Two are operand requests and one is the OP

code - program ID word (dummy words are formed in place of operand

requests for instructions that have less than two operands). The operand

request format is in Figure XV-S.

X is either a zero or a one depending on whether the operand should be

erased or not. The operand request is an a or a P word so that when the

desired operand appears in the result region it is copied and the operand

request sent to the instruction region. The OP code-program ID word is

a y word so that when the two operand requests return to it, all three are

sent to the processor region.

When a new instruction block is read in, a pointer word containing the

MPC block address and addressi of the start instruction is put in the

pointer region. This is used by SPB and SPR operations to find operands.

01 OPCRANO AOOIII(RI[ OGOO@KM G OX 0 0 IT AUC ? IN AOORISo 0

(17 1 a) I III ?wla

Figure XV-S - Operand Request Format

-387-

ON lo 00 F • • wq-



APPENDIX XV

e. Data

Data requests are s~nt to the result region. The upper limit contains the

MPC address.

f. Processor Results

Results of instructions are sent to the result region addressed appropri-

ately.

•. Summary

This describes the MPCG Generally speaking, f words contain data while

a,:3, y, and 8 words act as data requests. The 1/O region is fixed :n

length by guaranteeing a fixed number of words with the I/O region code

(it a 8 word finds not:,ing to send to the I/O region, it sends itself).

An MPC of 8192 words requires 91 steps (1/2 X 13 X 14 = 91) in its sort

phase and i step in its transfer phase. At 150 nsec per step, the MPC

cycle is 13. 8 usec. .%. good assumption to time out example problems then

is 13.8 usec per MPC cycle, Figure XV-6 shows the tming charts.

8. CONCLUSIONS

I'he various parts of Machinc II have been described. Ihe main differ-

ence between it and Machine i is the multiproce-sor control (M-,1PC), wh.ch

allows automatic dynamic processor A.hignments, the abijity to code

parallel programs without specifically assigning new processors, and

the abiE1"" to crosstalk betwveen parallel prograrmis. 'his enh inc'es the

elfticlenccy of t},c 111achine mn many prongram-i.

-10 - -



AP

ARI7HME•TIC AM•,) LOGIC (4 C' '. E5 V I, f" THS (4 VC I.f.S MINh

i •.. > 0
"A" IN "A" IN % , "A' IN "A"

RESULT INSTrLCTIOf,"-. - I RESULT ISTI
REGION REGION '-"A "B", AND RESULT IN RESULT IN REGION REGI

i ,,. , ) INSTRUCI ION PROCESSOR RESULT i

"B" IN Is.. I N IN PROCESSOR REGION REGION 81" IN .19."

RESULT INSTRUCTION REGION RESULT lNSTF

REGION REGION REGION .EGr.

I I i i 7 --
".." IN IN "B" AND RESULT IN RESULT IN 'A" IN "I "

RESIILT :NSTRJC.- INSTRUCTION PROCESSOR RESULT RtSUT ýNST

REGION TiON IN PROCESSOR REGION REGION c'-1ON REG

REGION PEGI ON

",I'!I. S 'H, BRH . (7 ;HNtI,/+ . E,'lVl.,) "3 +I,, +O

0 0 
RESULT INST

H- I---1I" "1- ---- H-t" - t ! REGION REG
INSTRUCTION POINTER POINTER TO "P" IN "I" IN "B'" AND RESULT IN RESULT IN

REAO-iN IN iN-TRUCTION RESULT IN '-,RUC- INSTRUCTION PROCESSOR RESULT START' (:CHt.F.S)

POINTER REGION REGION TION IN PROCESSOR REGION REGION

REGION REGION REGION

e'O"IN "s"*

How R IF PE 'UL'T INS'

,'EGION I o

1 -4 RE(
INS tR JC - IN'TRUC DATA IN DATA N

TION Tf i 'ý, N MEMORY R('. .OLT

READ-IN PROCFSSOR REGION RE..G!; N

REGION

RIK ] 4 R I% ,:4( )' I1 "; .

"A'" N "'I&'"

"i N t'l IN B AND DlATA !N DATA IN nf G.t'- N RIGI,

Fa f:J tj T N. ;% l'l P C - N' R U ~ m*M R' mc _ 4, pf ~, ý
04t ,N t:N '!ON NQ RuooO'"

'CG:ON NOTE t'u'' 
.i "

n 'I IPlAI "Wh71- 00,1111 VAlUIOSco~-',?' Nt' jkoAY 'we zUro L~.

A~-V



APPENDIX XV
I _ ___ I

THS (4 CYCLES MNIMUM) SUPER (2 CYCLES)

"A" IN "A" IN . INSTRUC- INSTRUC- SUPERVISORY

RESULT IN.TRUCTION . _ ._ _ TION TION IN ROUTINE
REGION REGION "A", "B". AND DATA IN DATA IN READ-IN PROCESSOR IN MEMORY

REGIO REGON 'A. "9, AN DATAINEGUTON
> 0 INSTRUCTION MEMORY RESULT REGION REGION,

"3a", IN "'l" IN IN PROCESSOR REGION REGION POINTER IN

RESULT INSTRUCTION REGION POINTER

REGION REGION REGION

STO (4 CYCLES MINIMUM TO BE REREAD)

I "A" ""-..> 0

"A" IN "A" IN " 0,=
RESULT INSTRUCTIOKI I ! 0

RREGION EGION -"A', "i ', AND DATA IN DATA IN DATA IN
• '" >0 MEMORY RESULT

I 0 INSTRUCTION MEMORY

"B" IN "B" IN IN PROCESSOk F.EGION REGION

RESULT INSTRUCTION REGIONSREGION REGION WHEN ITEMcIS REREAD

INTO THE MPC
RErt LT IN RESULT IN

bN PROD7ESSOR RESULT START (3 CYCLES)

OR REG ON REGION

".,. IN "B" IN "B" AND INSTRUCTION

RESULT INSTRUC- INSTRUC - BLOCK READ-IN EPB. EPR (3 CYCLES)

REGION -rION TION IN TO MEMORY
REGION PROCESSOR REGION AND R EINS-rRUC- 4NSTRUIC- ERASE ERASE

REG:ON POINTER IN TiON TION IN REQUESTS IN REQUESTS
PROCE"SSOR READ-IN PROCESSOR PROCE-jSOR TO RESULT
REGION REGION REGION REGION

CONDITIONAL STARTS (3 C YCLES MINIMUM)

> 0
"A" IN "A" IN ".=

RESULT INSTRUCTION". CONST(CYCLE)

REGION REGION ."""A". "B", AND INSTRUCTION BLOCK
"> 0 INSTRUCTION READ-IN TO MEMORY

IN PROCESSOR REGION AND POINTER INSTRUCTION CONSTANT

"B" IN "B" IN REGION IN POINTER REGION READ-IN IN RESULT

;RESSED IR; MPC CYCLES RESULT INSTRUCTION (IF CONDITION REGION

REGION REGION wATISFIED)

,THS ARE 'WAITS" FOR VARIOUS

AND MA•E E ZERO LENGTH,

Figure XV-6 - Timing Charts

-389- S



APPENDIX XVI -PARAL•LEL NONNUMEP.IC PROCESSING,

1. INTRODUCTION

Nonnumtric processing i s discussed in general along with the characteris-
tics that are present i- present-day machines and those characteristics

that are desirable in a parallel nonnumeric processor. Ways of imple-

menting these 6haracteristics by means of sorting memories are discussed.

The detailed design of a parallel nonnumeric processor awaits further study.

2. NONNUDMERIC PROCESSING

The words "numeric" and "nonnumeric" when applied to data processing
problems are misnomers. A look at typical numeric and nonnumeric prob-

lems reveals the distinguishing characteristic - the addressing of data. In

ha typical numeric problem, most items or data are addressed by their
unique labeld (addresses); this can be called "explicit addressing." In a

typical nonnumeric problem, most items of data are addressed by their

properties; this can be called "implicit addressing." This can be seen

when a typical numeric programming language, such as FORTRAN, in

which each item is referred to by a unique label, Is compared with a typi-

cal nonnumeric programming language, such as for list processing. in

which a typical operation might be the searching of a list structure for a

cet of items meeting a given pattern.

3. CLASSES OF PROPERTIES

In general, the properties by wkich data are implicitly eddrossed tau into

three classes:

1. Any property dependent on an item of data p se; for ex-

ample, tl.. property of being greater than or less than a
threshold or the property of having certain of its bits

-391-



APPENDIX XVI

matching a patterai. This class usually is called content-

addressing.

2. Any maximum or minimum property such as the property

of being the largest or smallest item n a set. This is re-

ferred to here as limit-addressing.

3. Any property dependent on "neighborhoods." When these oc-

cur in a nonnumeric problem, there is a structure (topology)

imposed on a set of data such as lists, trees, matrices, list

structures, etc. A typical property b:, which iteirs may be

addressed might be the satisfying of a subpattern. This is

referreti to here as structure-addressing.

Properties from more than one of these classes may be used in a single

search. For instance, one of the search patterns mentioned in Appendix X

is a st.-ing of five items (structure-addressing), the first, third, and fifth

of which are operators and the second and fourth of which are variabi-s

(content-addressing) and in which the precedency of the third item is

greater than that of the first item and not ý-iss than that of the fifth item

(limit-addressing). These properties are separated into these classes

because the implementations of searches for properties usually difier.

4. SOME PRESENT-DAY NONNUMERIC PROCESSORS

Most conventional computers are capable only of explicit addressing of

data. A few (the CDC-1604, for example) can perform equality search or

threshold search operations by whith a contiguous table in memory can be

content-addressed; these operations search sequentially and thus ar-t prac-

tical only for small tables. To make the solution of some nonnumeric prob-

lems more amenable on a conventional computer. a number of languages

are avadlable of which LISP, IPL-V, and SNOBOL are examples. In essence,

these lang1ages arrange the storage of data more efficiently so that struc-

ture-addressing is easier; link fields in items represent the neighborhoods.

The amount of time spent in housekeeping in these programs lowers their

potential to small nonnumeric problems.

-392-

wi.. ...g..



APPENDIX XVI

Content -addre suing memories (CAMs) can perform content -addres sing

very well since all of rmemory is interrogated at the same time. By add-

ing a fast facility to indicate the presence or nonpresence of responses,

limit-addressing (maximum and minimum searches) also is performed

very well Structure addressing can be added with multiple comparands

(see Item 5, below). Single-comparand CAM's might require long times

to do certain structure-addressing problems.

If the problems to be solved are limited to those with a certain topology,

the respon.-e store of a CAM could be interconnected in that topology and

a machine obtained that would solve problems in that class very well. Two

machines with this organization are the flliac III at the University of lli-
1, a 2

nois1,a and the SOLOMON. Both of these have the topology of a square

array. On problems that fit the square array, these machines do very

well while on other problems they lose much of their speed. There are

many different topologies present in nonnumeric problems; for example,

lists, list structures, trees, arrays, and graphs. In many problems, the

topology changes as computation proceeds, hence a machine with a fixed

topology will be limited in purpose. The topology of any practical nor-

numeric problem can be represented by a graph wit weighted directed

links; nodes represent items, and links represent the connections or re-

lations between neighboring items (the link weight shows the kind of rela-

tion). As is shown under Item 5 balow, content-addressing can be changsed

to structure-addressing so an organisation based on graphs will have great

utility.

S. CONTENT-ADDRESSING BY STRUCTUFR-.ADDRESSING

Given a processor capable of representing any topology, one can imple-

ment content-addressing. The technique is to separate each item into its

separate fields and connect the fields by weighted links to dhow where they

Superior numbers in the text refer to Items ir the List of References under

Item It, Page 40S.

-393-

-611 Wiwiii



APPENDIX XVI

occur, and then coalesce any equal-valued items. Each item contains only

one field and its value is unique so its value can be used as a label or ad-

dress by which it can be explicitly addressed. The example that follows

exhibits this technique. Suppose there are the following eight 3-field items
to be content-addressed:

A 1 3

B 2 1

C 1 2
D 3 3

E 2 2
F 1

G 3 1

H 2 1

The three fields of each item are separated and connected by a link oi
Weight 2 between the first and second fields and a link of Weight 3 between

the first and third fields. Then all equal-valued items are coalesced. The

resulting graph is:

A content-addrebs search for those ifen-s whose second and third fields are

Z and i, respectivoly, is transformed to a pa search for

.394-

•~ ~ ~ F Im | WIN 01 1 , .. u mmm 1 •• m u a un -n"|ms .i ur•



APPENDIX XVI _

2•

Any content-address search can be similarly transformed.

6. STRUCTURE-ADDRESSING BY CONTENT-ADDRESSING

Given a multiple -comparand content-addressable memory, one can imple-

ment structure-addressing on it; one stores a word for each link of the

graph containing the initial node label, the link weight, and the terminal

node label.

As an example, the graph previously shown could be stored in a CAM as

follows:

Initial Link Terminal
node weight node

A 2

A 3 3
B 2

B 3 1

C 2 1

C 3 2

D 2 3

D 3 3

E 2 2
£ 3 2

F 2
F 3 1
0 2 3

G 3 1

H 2 2

H 3 1

-395-



APPENDIX XVI

The pattern search

could be implemented as follows:

1. Find all words with Z, 2 in their second and third

fields (three responses: B, 2, 2,; E, 2, 2; H, 2, 2).

2. Form a comparand for each response whose first

field is the first field of the response and whose

second and tI.ird fields are 3 and 1 respectively
(three comparands: B, 3, 1; E, 3, 1; H, 3, 1).

3. Find all words that agree with one of these compa-

rands (two responses: B, 3, -; H, 3, 1).

B and H satisfy the pattern search (the first fields of the :esponses to

Step 3).

This example shows the use of multiple comparands. In generral, they

will be required in many structure searches, being formed from the re-

sponses of one step of the search for use in a later step. If the data struc-
ture is large, there may be many comparands in some step of a search; a

single.comparand CAM can only treat these one at a time and may become

unduly slow.

A machine organization using a single comparand CAM. for structuire ad.
dressing is the Associttion.Storing Processor. 3 Since only one comparand

is permitted at a time, the search tigorithm involves a "backtrack" pro.
cedurem that is, after any step it treat* on* of the responses in the next

step, carrying it to completion, and then treats the others in later steps.

The time spent in a given search depends strongly on the complexity ol

the datm structure being searchedi some structure* may generate numer-

ous responses and hence, numerous bacItrackings,

-394-



APPENDIX XVI

From these thoughts, the desirability of a multiple-comparand content-

addressed memory car. be seen.

7. A SORTING MEMORY AS A MULTICUMPARAND CAM

a. Geteral

One way to build a multicostparand CAM is to use multipie response

stores, one for each comparand. The response store in a CAM is a

major cost item and thus this solution is uneconomical. Another way

is to use a sorting memory (Append. V VI). Th.s has the advantage

that the cost incremernt is small as comparands are added. One limi-

tation is that only searches on the left parts of words can be performed;

prmpe-r-organization of data removes the effect of this limitation.

b. Main Section

A sorting memory used for multiple.comparand content-addressing

has 11 different words in its main section. Their formats are shown in

Figure XVI-1. The leftmost bitic of these words are 0. The high end of

the sorting memory is the readout section and contains words with

leftmost bits equal to 1. The readout section is discussed in Item c

below.

Empty words contain all zeros except for two bits as shown in Figure
XVI-l. Their magnitude is less than that of any other word in memory

and thus they collect at the low end of memory. The low end is used

for input so the empty words are overwritten with new data or oper.

ations through the input lines.

Each link of the data structure is represented by two link words - a

forward word and a backward word. The node labels are interchaneed

and the bit between the A and B fields is changed from 0 to 1 in the

backward word. Because of the sorting action, the forward words of

all links leaving a given nod. *re collected and ordered b-1 their weights.

Similarly, the backward words of all links entering the node are col.

lected ir. a set adjacent to the forward words of links leaving the node.

* 3 qi



APPENDIX XVI

EMPT Y WORD L01La10 01110 6ijt]{FORWARD WORD
oINITIAL NODE LABEL 101 INK WEIGH4T I TERMI~NAL MOOE LARIEL

LINK WORDSo
SIACICWARD WORD
0 TERMINMAL NO00E LABELl I I LINK WIEIGNT IIIILMO AE

I' FORWARD WORD DESTRUCTION

101 INITIAL MOO0! LABEL 101 LINK WMIGHT I ITERMI NAL NODE LASEL 0

2. BACKWARD WORD DESTRUCTION

0 TYERMINAL N0DE LASEL11 I LINK WEIGHT II INITIAL NODE LAUII. 0

3: READ ALL LINKS ON A NODE

4: READ ALL LINKS ON A NOVE AND DESTROY

OPERAT ION

WORDS

5: READ CERTAIN FOR WARD WORDS

009 L 99ASL 0 LINK WEIGHT 101I i CON mC-1. I

6: READ CIR. N*f FORWARD WORDS AND DESRT OY

HvEIIALNMODE LABEL T0 LINK WEIGH4T 160 01 CONTle, !a

7: READ CERTAIN GACK*ARO WORDS

& READ CERTAIN SACIMARD 00004 AND DESlrTRO

L'Nnw 11*4LaA1 o wao"? 10o1611 C2,M? , * 1. 10

Figur~e XVX1 . 'Word ForwiAzt it MNWIteonmparand C-anwtet-Aidr~tseed
Sorting Memory



APPENDIX XVI

Operations I and 2 (Figure XVI-I) destroy a word with a given link

weight and node labuis. They are characterized by a I between the

B and C fields and a 0 in the rightmost position. The bit between the

A and B fields indicates which operation is to be done, forward word

destruction or backward word destruction. In either case, the sort-

ing action sends the operation word to a location just below the word

to be destroyed. Circuitry in the memory detects the existence of

the operation word and changes it and its corresponding link word

to empty words. If no link word corresponds, the operation word

alone is destroyed.

Operations 3 and 4 read all the links on a given node; A 0 between

the B and C fields and a I I in the two leftmost C-field positions

characterize these operations. The sorting action sends these oper.

ation words to a location just below the links of the given nod-. Cir.

cuitry in the rremory detects the presence of one of thede operation

words and causes the following action.

i. The C-field contents of the operation word re-

Places the Ni field of all correaponding link

words.

-. The A- and C-field contents of the operation

word are interchanged.

3. 77he lelinivot bita Q1 the link -ýods id Ppvr

ation word ,rc chanped from 0 to 1.

This action causos the operation word and link words to tra•el to the

readeat iecticn during the next #ort cycle. Tht- liok words rare sent

back to the MAIn #Pt~ton after rvCeo oit 4nd 41%ci- ii the r~igtmr.

operation w-rd b'i to I (Oper4tlvn I rather thoft Oporation 4).

Operation 5- 6. 77. and 8 r#nJ all links wal- A le•i weigitt and di-

reti"f 1i~mi a: ;i tvn n~&e. A 0 ý*tweft~ ihr 1N *fd C lields

and A 01 in the tw~o letmnost C-iteld p%;k#tionA cý. rotIcrite thestt

operation words. The fearting action s4.-dt tho- opvratiovt. words

.399A



APPENDIX XVI

to a location just below the links to be read. Circuitry

in memory detects their prer 6ence and causes exactly the same

"action as that for Operations 3 -nd 4; only the link words with the de-

sired link weight are treated.

c. Readout SectioiY

As indicated in b above, Operations 3 through 8 cause the leftmost

bits of certain words to be changzed from 0 to 1; during the succeeding

sort cycle, these words arrive at the high end of memory (the read-

cut section). At any time, each oi the operation words has a unique

control so that no intermingling of responses between concurrent

operations can occur (the control is put in the A field as discussed

in b above).

Readout lines connected to the high end of memory read the contents

of the readout section after which circuitry in memory causes the

following action:

1. Any link word associated with an operation word

whose rightmost bit is 0 is overwritten with an

empty word (this destroys this link word).

2. The A-field of any link wnrd associated with an

operation word whose rightmost bit is I is re-

placed by the C field of the operation word (this

was its original A field) and the leftmost bit of

this link word is ý.hanged back to 0 (ti's puts it

back in its original state).

3. Any operation word is overv r;tter, with an empty

word.

'n the succeeding sort cycle all undestwoyed linr wordr i.turn to their

former positions in the main section of memory.

d. Conflicts between Operation Words

There is a possibility that more than one operation word .-v.nts to

-400-

VWANOW-P•



APPENDIX XVI

affect the sarme link words. These conflicts are detected in the main

section and resolved with the following rules:

1. Operations I and 2 take precedence over the other

operations. Any other operation can still read

any link not being destroyed by an Operation I

or 2.

2, Operations 5, 6, 7, and 8 take precedence over

COuerations 3 and 4. Otherwise, conflicts are

rý_fojved in favor of the operation word with

highert control field. Any operation word losing

out to another by this rule is "delayed" -is dis-

cussed below.

An operation word iosing a conflict by Rule 2 is delayed by changing

the I in its second leftmost C-field position to a 0. The word remains

ii: this state during the succeeding sort cycle. At the end of this cycle,

the bit is changed back to a 1 but no other action occurs until the end

of the following sort cycle at which time thc operation is tried again

(at this time any undestroyed links that were sent to the readout sec-

tion by the operation winning the conflict have been returned to their

original state).

Operations 3 through 8 cause link words to be absent from the main

section for two sort cycles. A simple rule can prevwnt the possibility

that an operation word arrives in the main section while the links it

wants are in the readout section. The rule is to input operation words

with odd A fields only during alternate cycles and operation words

with even A fields only during the intervening cycles.

The restriction mentioned in the foregoing paragraph can be removed

by the addition of "place marker" words to those of Figure XVI-l. Such

words %ý ,j.Ad remain in the main section in place of those links sent

to the readout section.

-401-

im mra mm imm m Im • mmmm mm m m m lm pm, imm mmmk• !' • m• = I'



APPENDIX XVI

8. A PARALLEL NONNUMERIC PROCESSOR

A parallel nonnumeric processor could be constructed using the multiple-

comparand content-addressed sorting meinory described in Item 7. Fig-

ure XVI-2 shows a block diagram of such a processor

In general, the processing unit sends operation words and new link words

to the memory and receives responses in return. The control fields origi-

nally entered in the operation words wind up in the responses so ihat no

ambiguity occurs even though many different operation words may be pres-

ent. The control fields are used in the processing unit to send the re-

sponses to the correct locations. InFit and output channels communicate

with the processing unit. These can be handled in a manner similar to

that described in Appendix XV.

Further development of the processing unit is dependert on development

of general-purpose structure-search algorithms. Tht basic form for an

algorithm that treats both searches with loops and "loop-free" searches

is discussed below. Arithmetic and other operations need also be included

to obtain a useful machine.

INPUT

RESPONSES CHANNELS

MULTIPLE COMPARAND

CONTENT ADDRESSED SORTING
MEMORY

SORTING MEMORY

• • .. . ... OUTPUT
"" OPERATION WOROS CHANNELS

ME.MORY AND NEW DATA 6ROCESSI'C UNIT

Figure XVI-Z - A Parallel Nomiumeric Processor

-402-



APPENDIX XVI

9. ALGORITHM FOR PARALLEL-STRUCTURE SEARCHES

This algorithm will search any data structure for a subpattern that meets

the following condition.:

1. All link weights in the search pattern are constant

(have known weights), and

2. At least one node in the search pattern is constant

(has a known label),

The algorithm works in "parallel, " treating all possible search candidates

simultaneously. The time in most cases is proportional to the number of

links in the search pattern unless storage limits are reached.

The algorithm produces a set of n-tuples where n is the number of vari-

ables in the search pattern. Depending on the implementation of the al-

gorithm, the n-tuples might be stored as ordered sets of words in the

processing unit or the n-tuples might be represented in memory; for ex-

ample, a new node for each n-tuple connected to a fixed node and to all of

its members by links with certain weights.

We assume the variable nodes of the search pattern are labelled by X1 ,

. , Xn. The ith term (for l - n) of each final n-tuple will

contain the node label of X. in the subpattcrn corresponding to the n-tuple.

With no loss of generality, it can be assumed that for any pair of variables

in the search pattern there exists at least one path between them incident

only on variable nodes. If this condition is not met, then the search pat-

tern can be split along some of its constants into two or more disconnected

pieces; each of the pieces meets the condition and can be treated inde-

pendently of the other pieces. Furthermore, any !ink between constants

is redundant and can be removed.

The only housekeeping required is a method of marking treated links in

the search pattern to distinguish them from untreated links.

The algorithm is as follows:

-403-

Nah, E1171



APPEN.DIX XVI

Stop 1. Pick any link in the search pattern incident on a
constant. The other node of the link is a variable, say
X.. Depending on link direction, send an Operation 5 or 7

word to memory (see Figure XVI-1)using the constant and
link weight in fields A and B, respectively. The re-
eponses are candidates for X.. Form an n-tuple for

each response with the response node label as its ith
"r.-ember. Mark the search pattern link as being treated.
Go to Step 2.

F Stee2. Is there any untreated link in the search pattern
e eWen a constant and a variable incident on a treated

4• link? If so, go to Step 3; otherwise, go to Step 4.

Step 3. Let the untreated link of Step 2 have link weight
: Wonstant node C, and variable node X.. Depending on

link direction send an Operation 5 or 7 word to memory* !with C and W in fields A and B, respectively. Compare
the responses to the ith members of all n-tuples and de-
stroy any n-tuple whose ith member does not correspond
to any response. Mark the link as being treated. Go to
Step 2.

SSte 4. Is there any untreated link in the search pattern
eetwEeen two variable nodes, each of which is incident on

some treated link? If so, go to Step 5; otherwise, go to
Step 6.

S te_ 5 . Let the untreated link have weight W, initial node
Xia-nd terminal node X.. For each n-tuple, send an

Operation 5 word to memory with its ith member in the
A field and W in its B field and discard the n-tuple if its
jth member does not agree with any of the responses.
Mark the link as being treated. Go to Step 4.

Ste6 6. Are all links in the search pattern treated? If
- otTe algorithm is complete; if not, pick an untreated
link one of whose nodes is incident on a treated link and
go to Step 7.

Ste 7. Let the untreated link have weight W. Let the
.. U ncident on a treated link be Xi and let the other
node be X. Depending on link direction, send an Oper-

I ation 5 or 7 word to memory for each n-tuple. The A
field of the operation word is the ith member of the n-
tuple and the B field is W. If the operation word for the

4 n-tuple has m responses, replicate the n-tuple m times
and put one response in the jth member of each copy,
Mark the link as being treated. Go to Step 2.

-404-



APPENDIX XVI

i
This algorithm can be halted after Steps 1, 3, 5, or 7 if no n-tuples are

present. This condition means that no subpattern of the data structure

matches the search pattern.

10. CONCLUSIONS

This appendix has discussed nonnumeric processing in general and charac-

teristics that are present in current machines and also those characteris-

tics desirable in a parallel nonnumeric processor. It was shown that a

multicomparand 'AM exhibits these desirable characteristics. It was

further shown that a sorting memory can serve as an implementation of

a multicomparand CAM. A general form for a parallel nonnumeric proc-

essor was described. A basic search aigoritham was presented for parallel

structure searches.

Time limitations prevented development of the detailed processor design.

A general search algorithm should also be developed. However, study to

date indicates that a machine patterned after the organisation in this re-

port would be capable of solving large nonnumeric problems significantly

faster than other existing schemes.

11. LIST OF REFERENCES

1. Mc.Cormick, B. H.: The Illinois Pattern-Recognition Computer
(lcIII). Urbana, Ill., Unive-rsity of llincis, Digital Computer

aborator eport No. 148, 1963.

2. Slotnick, D. L., et al.: "SOLOMON. " Proceedi.-ps of The Fall
Joint Computer Conference, 1962.

3. RADC-TR-65-32: Association-Storing Processor. Rome Air De-
velopment Center, Grifiss Air Force Base, N.Y.

-405-

~~~YwWN 17.-~-~


UNCLASSIFIED
SecuritZ C~aui~jtpptjoj

DOCUMENT CONTROL DATA - R&D
(Ittptiuuy , ecalfipftiwn of 0#019 @10 O e~f qabsF And tPWIRI~g 41W1., 0101 must be mnterd, VA~n th onm. l .vf I .w So oI...IU.E.)

I1. 'dAtrI1gNATI" G At1' V7 T lV rPF0 041010f9 80 IPR 9UIYC641FCTO

Goodyear Aerospace Corp

Advanced Computer Organization Study
Volumies I and II
0. OESCMI!TIVE N@Ttt (TnK at99PP~PPR QWoysive v..)

Final Report August 1964a - November 1965

Rohrbacher, Donald L.

-. -April 1966 5O0PPtS ?b O PRP

80 ;GNTRACT 004 GR4I4T 143.. QRIGINATOON3 mstaopl Nmumet8)AF3O(602)-355O

96c.go P0143?u HO) (A a? oter .ntmob., that amp b* 410010104
Task 4590o6

1
10. AV A IC..ANILITY/LIMIyA~ION N01PIC46

Distribution of this document is unlimited.

it. SUPPL EMFI4TAMqY -OT9II li. SPONSORING MIL.ITARYV ACTIVITY

Rome Afr Development Center
______________________________ GAFB, N.Y. 13I.I0O.

13. ABSTRACT Advanced genera2l-purpose coT--p-uTer organizations oapable of parallel datarocessing were studied, To achieve maniin!rn ebstem performan~ce from highly parallel
zomputer organizations, new solution models and programming technique. must be devel 9-
5d. Hence, the following three areas were investigated simultaneously:

1. Applications - Study of problems and their Inherent degree of paxrallelisn6 and
levelopment of theoretical solution models for use on a parallel processor.

2. Programming - The programming of paralal solution models on the postulated
ompixter organizatinna.

3. Machine Organization - TDevelopnent of machine implenentations capable of par-
ilel data processing.
*is study resulted in the design of two, compivter organizations (designated Machine
and Machine II) capable of parallel dat~a processing and fast sorting and table sea oh-ng in memory. These machine organizations were possible because of the development

f a special memory that permits many processing and input-output units to access
eemory simultaneouIsly without conflict.
The applications effort was focused on the development of solution modele which

loited the maximum amount of parallelism resident within a problem. Nor majQ'
3roblems were investigated: a dynamic programming problem, and parallel compilation.

Detailed programs were written for the dynamic programming problem on Machine I ar9Lparallel compilation algcrithm on Machine 3II. These same problems aleo were progra md)n the IBM 7090 to provide a standard of comparison. In both oases,, the parallel pr -easing capability of the machines afforded sJignificAnt increases in speed ot progru
ecution.

D -JAN 6. 4 7 UNCLASSIFIED
security Clmassification

UNCLA.SSIFIED
Security Classification _ _

LINK A LINK U LINK C
KEY WOROS ROL. WT ROLS WY ROLEi WT

Computer
Programming
Numerical Analysis

INSTRUCTIONS

I. ORIGINATING ACTIVITY: Enter tI.- name and address imposed by security classification. ualnr standard statements
of the contractor, subcontractor, grantee. Department of De- such as:
Iense activity or other organization (corporate author) issuing (1) "Qualified requestpras may obtain copies of this
the report. report from DDC."

2a. REPORT SECURITY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether report by DDC is not authorized."
"Restricted Data" is included. Marking is to be in accordr
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies ofthis report directly from DDC. Other qualified DDX:
2b. GROUP: Automatic downgrading is specified in DoD Di- users shald request through
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also. when applicable, show that optional
markings have been used for Groun 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified, ..
If a meaningful title cannot be selected without classifies-
tion. show title classification In all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-
immediately following the title. ified DDC users shall request through

4. DESCRIPTIVE NOTES. If appropriate, enter the type of __"

report. e.g., interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical
Give the inclusive dates when a specific reporting period is Services. Department of Commerce, for sale to the public. indi-
covered. cate this fact and enter the price, if known.
5. AUTIIOR(S) Enter the name(s) of author(s) ,s shown on IL SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Enter lest name, first name, middle initial, tory notes.
If m.ilitary, show rank ond branch of service. The name of
the principal .- ,thor is an absolute minimum reqluirement. 12. SPONSORING MILITARY ACTIVITY: Etter the name of

the departmental project office or laboratory sponsoring (pay-
6. REPORT DAT".- Enter the date of the report as day. Ing for) the research and development. Include address.
month, year; or month. year. If more than one date appears
on the report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-
shoulr; follow normal pagination procedures, i.e.. enter the port. If additional space is required, a continuation sheet shall'
number of pages containing information. be attached.
7b. NUMIBER OF REFERENCES. Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (TS). (s). (C). or (U).
the rt.port was writ~en. 'here Is no limitation on the length of the abstract. How-
8b, 8L. & 8d. PROJECT NUM13ER: Enter the appropriate ever. the suggested length is from 150 to 225 words.
mritary department identification, such as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as
9a. OR!GINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
ciul report number by which the documernt will be identified selected so that no security classification is required. Identl-
and controlled by the originating activity. This number must tiers, such as equipment model designation, trade name, military
be unique to this report. project code name, geographic location, may be used as key
9h. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-
assitned any other report numbers (either by the originator text. The assignment of links, rules, and weights is optional.
or by the sponsor), also enter this number(s).

10. AVAILALILITY/LIMITATION NOTICE.S Enter any lim-
itations on further dissemination of the report, other than thosel

UNIA•SSIFIED
Security Classification

